List of hybrid functionals
A certain number of unscreened and screened hybrid functionals are available in VASP, and furthermore if VASP is compiled with the library of exchange-correlation functionals Libxc, then most of the existing hybrid functionals can be used[1]. Examples of INCAR files are shown below. Since VASP.6.4.0 it is possible to use hybrid functionals that mix meta-GGA and Hartree-Fock exchange. Note that it is in general recommended to use the PBE POTCAR files for hybrid functionals.
Range-separated hybrid functionals
- HSE06[2]
LHFCALC = .TRUE. GGA = PE HFSCREEN = 0.2
LHFCALC = .TRUE. GGA = PE HFSCREEN = 0.3
LMODELHF = .TRUE. AEXX = HFSCREEN = GGA = PE
- where is the inverse dielectric constant and is the range separation parameter. See a detailed description of these hybrid functionals in the documentation for the LMODELHF tag.
- HSEsol[8]
LHFCALC = .TRUE. GGA = PS HFSCREEN = 0.2
- RSHXLDA[9]
LHFCALC = .TRUE. LRHFCALC = .TRUE. GGA = CA (or PZ) HFSCREEN = 0.75 # Optimal value for solids
- RSHXPBE[10]
LHFCALC = .TRUE. LRHFCALC = .TRUE. GGA = PE HFSCREEN = 0.91 # Optimal value for the enthalpies of formation of molecules
Unscreened hybrid functionals
LHFCALC = .TRUE. GGA = PE
- B3LYP[14] with VWN3 (or VWN5) for LDA correlation
LHFCALC = .TRUE. GGA = B3 (or B5) AEXX = 0.2 AGGAX = 0.72 AGGAC = 0.81 ALDAC = 0.19
LHFCALC = .TRUE. GGA = LIBXC LIBXC1 = HYB_GGA_XC_B3PW91 # or 401 AEXX = 0.2
LHFCALC = .TRUE. GGA = LIBXC LIBXC1 = HYB_GGA_XC_B1WC # or 412 AEXX = 0.16
- SCAN0
LHFCALC = .TRUE. METAGGA = SCAN
- Hartree-Fock (no correlation)
LHFCALC = .TRUE. AEXX = 1
Mind: Note the default values when LHFCALC=.TRUE.: |
Related tags and articles
GGA, METAGGA, LIBXC1, LIBXC2, AEXX, ALDAX, ALDAC, AGGAX, AGGAC, AMGGAX, AMGGAC, LHFCALC, HFSCREEN, LMODELHF, LRHFCALC, Hybrid functionals: formalism
References
- ↑ https://libxc.gitlab.io/functionals/
- ↑ A. V. Krukau , O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
- ↑ J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
- ↑ J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
- ↑ J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
- ↑ W. Chen, G. Miceli, G.M. Rignanese, and A. Pasquarello, Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators, Phys. Rev. Mater. 2, 073803 (2018).
- ↑ Z.H. Cui, Y.C. Wang, M.Y. Zhang, X. Xu, and H. Jiang, Doubly Screened Hybrid Functional: An Accurate First-Principles Approach for Both Narrow- and Wide-Gap Semiconductors J. Phys. Chem. Lett., 9, 2338-2345 (2018).
- ↑ L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011).
- ↑ I. C. Gerber, J. G. Ángyán, M. Marsman, and G. Kresse, Range separated hybrid density functional with long-range Hartree-Fock exchange applied to solids, J. Chem. Phys. 127, 054101 (2007).
- ↑ I. C. Gerber and J. G. Ángyán, Hybrid functional with separated range, Chem. Phys. Lett. 415, 100 (2005).
- ↑ J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
- ↑ M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
- ↑ C. Adamo and V. Barone, Phys. Rev. Lett., 110, 6158 (1999).
- ↑ P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
- ↑ A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- ↑ D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Iniguez, and P. Ghosez, Phys. Rev. B 77, 165107 (2008).