GGA

From VASP Wiki

GGA = PE | RP | PS | AM | LIBXC | ... 

Default: The functional specified by LEXCH in the POTCAR if METAGGA and XC are also not specified.

Description: Selects a LDA or GGA exchange-correlation functional.


Important: VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the POTCAR file. For this to work, the original LEXCH tag must not be modified in the POTCAR file.
Mind:
  • When the OR, BO, MK, ML or CX GGA is used in combination with the nonlocal vdW-DF functional of Dion et al.[1], the GGA component of the correlation should in principle be turned off with AGGAC=0 (see nonlocal vdW-DF functionals).
  • The XC tag, available since VASP.6.4.3, can be used to specify any linear combination of LDA, GGA and METAGGA exchange-correlation functionals.

Available functionals

This table lists the LDA and GGA functionals available in VASP. The names of functionals which end with "_X" and "_C" correspond to exchange-only and correlation functionals, respectively.

GGA= Type Description
LIBXC (or LI) LDA/GGA Any LDA or GGA from the external library Libxc.[2][3][4] It is necessary to have Libxc >= 5.2.0 installed and VASP.6.3.0 or higher compiled with precompiler options. The LIBXC1 and LIBXC2 tags (where examples are shown) are also required.
CA (or PZ)(1) LDA Slater exchange[5] + Perdew-Zunger parametrization of Ceperley-Alder Monte Carlo correlation data.[6][7]
PW92(1) LDA Slater exchange[5] + Perdew-Wang parametrization of Ceperley-Alder Monte Carlo correlation data.[6][8]
SL(1) LDA Slater exchange only.[5] Available since VASP.6.4.3.
CA_C (or PZ_C) LDA Correlation-only Perdew-Zunger parametrization of Ceperley-Alder Monte Carlo correlation data.[6][7] Available since VASP.6.4.3.
PW92_C LDA Correlation-only Perdew-Wang parametrization of Ceperley-Alder Monte Carlo correlation data.[6][8] Available since VASP.6.5.0.
VW(1) LDA Slater exchange[5] + Vosko-Wilk-Nusair correlation (VWN5).[9]
HL(1) LDA Slater exchange[5] + Hedin-Lundqvist correlation.[10]
WI(1) LDA Slater exchange[5] + Wigner correlation[11] (Eq. (3.2) in Ref. [12]).
PE GGA Perdew-Burke-Ernzerhof (PBE).[13]
PBE_X GGA Exchange-only Perdew-Burke-Ernzerhof.[13] Available since VASP.6.4.3.
PBE_C GGA Correlation-only Perdew-Burke-Ernzerhof.[13] Available since VASP.6.4.3.
RE GGA Revised PBE from Zhang and Yang (revPBE).[14]
RP GGA Revised PBE from Hammer et al. (RPBE).[15]
PS GGA Revised PBE for solids (PBEsol).[16]
AM GGA Armiento-Mattsson (AM05).[17][18][19]
91(1) GGA Perdew-Wang (PW91).[20]
B3(1) GGA B3LYP[21] with VWN3[9] for LDA correlation.
B5(1) GGA B3LYP[21] with VWN5[9] for LDA correlation.
OR(2) GGA optPBE exchange[22] + PBE correlation.[13]
BO(2) GGA optB88 exchange[22] + PBE correlation.[13] PARAM1=0.1833333333 for and PARAM2=0.22 for also need to be specified.
MK(2) GGA optB86b exchange[23] + PBE correlation.[13] The PARAM1 and PARAM2 tags can be used to modify the parameters and , respectively.
ML(2) GGA PW86R exchange[24] + PBE correlation.[13]
CX(2) GGA CX (LV-PW86r) exchange[25] + PBE correlation.[13]
BF GGA BEEF (requires VASP compiled with -Dlibbeef).[26]

(1) The Slater LDA exchange includes relativistic effects.[27]

(2) The exchange component was designed in particular to be used as the exchange component of Nonlocal vdW-DF functionals and with AGGAC=0 such that only LDA is used for the local correlation, see list of nonlocal vdW-DF functionals.

Related tags and articles

LIBXC1, LIBXC2, ALDAX, ALDAC, AGGAX, AGGAC, METAGGA, XC

Examples that use this tag

References

  1. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
  2. M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Comput. Phys. Commun., 183, 2272 (2012).
  3. S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX, 7, 1 (2018).
  4. https://libxc.gitlab.io
  5. a b c d e f P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
  6. a b c d D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
  7. a b J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
  8. a b J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
  9. a b c S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
  10. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
  11. E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
  12. D. Pines, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1955), Vol. I, p. 367.
  13. a b c d e f g h J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
  14. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
  15. B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
  16. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
  17. R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
  18. A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills, and T. R. Mattsson, J. Chem. Phys. 128, 084714 (2008).
  19. A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).
  20. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
  21. a b P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  22. a b J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
  23. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
  24. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).
  25. K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014).
  26. J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, Jens K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).
  27. A. H. MacDonald and S. H. Vosko, A relativistic density functional formalism, J. Phys. C 12, 2977 (1979).