GGA: Difference between revisions
Line 73: | Line 73: | ||
== Example Calculations using this Tag == | == Example Calculations using this Tag == | ||
{{TAG|bandgap of Si using different DFT+HF methods}}, {{TAG|bandstructure of Si in GW (VASP2WANNIER90)}}, {{TAG|dielectric properties of Si}}, {{TAG|MgO optimum mixing}}, {{TAG|Si bandstructure}} | {{TAG|Alpha-AlF3}}, {{TAG|Alpha-SiO2}}, {{TAG|bandgap of Si using different DFT+HF methods}}, {{TAG|bandstructure of Si in GW (VASP2WANNIER90)}}, {{TAG|dielectric properties of Si}}, {{TAG|MgO optimum mixing}}, {{TAG|Si bandstructure}} | ||
== References == | == References == |
Revision as of 16:09, 21 February 2017
GGA = 91 | PE | RP | PS | AM
Default: GGA = type of exchange-correlation in accordance with the POTCAR file
Description: GGA specifies the type of generalized-gradient-approximation one wishes to use.
This tag was added to perform GGA calculation with pseudopotentials generated with conventional LDA reference configurations.
Possible options are:
GGA Description 91 Perdew - Wang 91[1] PE Perdew-Burke-Ernzerhof[2] AM AM05[3][4][5] HL Hendin-Lundqvist[6] CA Ceperley-Alder[7] PZ Ceperley-Alder, parametrization of Perdew-Zunger[8] WI Wigner[9] RP revised Perdew-Burke-Ernzerhof (RPBE)[10] with Pade Approximation VW Vosko-Wilk-Nusair[11] (VWN) B3 B3LYP[12] (Joachim Paier), where LDA part is with VWN3-correlation B5 B3LYP (Joachim Paier), where LDA part is with VWN5-correlation BF BEEF[13], xc (with libbeef) CO no exchange-correlation PS Perdew-Burke-Ernzerhof revised for solids (PBEsol)[14] for range-separated ACFDT: RA new RPA Perdew Wang (by Judith Harl) 03 range-separated ACFDT (LDA - sr RPA) 05 range-separated ACFDT (LDA - sr RPA) 03 range-separated ACFDT (LDA - sr RPA) 05 range-separated ACFDT (LDA - sr RPA) PL new RPA+ Perdew Wang (by Judith Harl) for vdW (Jiri Klimes): RE revPBE[15] OR optPBE[16] BO optB88[16] MK optB86b[16]
The tags AM (AM05) and PS (PBEsol) are only supported by VASP.5.X. The AM05 functional and the PBEsol functional are constructed using different principles, but both aim at a decent description of yellium surface energies. In practice, they yield quite similar results for most materials. Both are available for spin polarized calculations.
Example Calculations using this Tag
Alpha-AlF3, Alpha-SiO2, bandgap of Si using different DFT+HF methods, bandstructure of Si in GW (VASP2WANNIER90), dielectric properties of Si, MgO optimum mixing, Si bandstructure
References
- ↑ J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
- ↑ J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- ↑ R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
- ↑ A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, and T.R. Mattsson, J. Chem. Phys. 128, 084714 (2008).
- ↑ A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).
- ↑ L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
- ↑ D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
- ↑ J. P. Perdew and Alex Zunger, Phys. Rev. B 23, 5048 (1981).
- ↑ E. Wigner, J. Chem. Phys. 5, 726 (1937).
- ↑ B. Hammer, L. B. Hansen and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
- ↑ S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980).
- ↑ A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- ↑ Jess Wellendorff, Keld T. Lundgaard, Andreas Møgelhøj, Vivien Petzold, David D. Landis, Jens K. Nørskov, Thomas Bligaard and Karsten W. Jacobsen, Phys. Rev. B 85, 235149 (2012).
- ↑ J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
- ↑ Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
- ↑ a b c J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Cond. Matt. 22, 022201 (2010).