GGA: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(141 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{TAGDEF|GGA|91 {{!}} PE {{!}} RP {{!}} PS {{!}} AM {{!}} LIBXC| exchange-correlation functional in accordance with the {{FILE|POTCAR}} file}}
{{TAGDEF|GGA|PE {{!}} RP {{!}} PS {{!}} AM {{!}} LIBXC {{!}} ...| exchange-correlation functional in accordance with the {{FILE|POTCAR}} file}}


Description: {{TAG|GGA}} specifies the GGA or LDA exchange-correlation functional one wishes to use.
Description: {{TAG|GGA}} specifies a LDA or GGA exchange-correlation functional.
----
----
This tag was added to perform GGA calculation with pseudopotentials generated with conventional LDA reference configurations.
This tag was added to perform GGA calculations with pseudopotentials generated with conventional LDA reference configurations.
{{NB| important| VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the {{FILE|POTCAR}} file. For this to work, the original LEXCH tag must not be modified in the {{FILE|POTCAR}} file.}}
{{NB| important| VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the {{FILE|POTCAR}} file. For this to work, the original LEXCH tag must not be modified in the {{FILE|POTCAR}} file.}}


Possible options are:
A few points should be noted:
*The LIBXC option (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}}. Along with {{TAG|GGA}}=LIBXC, it is also necessary to specify the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags that specify the particular functional. Note that it is necessary to have [[Makefile.include#Libxc_.28optional.29|Libxc >= 5.2.0 installed]] and VASP.6.3.0 or higher compiled with [[Precompiler_options#-DUSELIBXC|precompiler options]].
*When the OR, BO, MK, ML or CX GGA is used in combination with the nonlocal vdW-DF functional of Dion ''et al.''{{cite|dion:prl:2004}}, the GGA component of the correlation should in principle be turned off with {{TAG|AGGAC}}=0 (see {{TAG|nonlocal vdW-DF functionals}}).
<!--
*The options in the last table allow to select range-separated ACFDT calculations, where a short-range local (DFT-like) exchange and correlation kernel is added to the long-range exchange and RPA correlation energy.
-->


The possible options for the {{TAG|GGA}} tag are:
<!--
:'''No functional:'''
:{| border="1" cellspacing="0" cellpadding="5"
|-
|CO  || No exchange-correlation
|-
|}
-->
:'''LDA functionals:'''
:{| border="1" cellspacing="0" cellpadding="5"
|CA (or PZ)  || Slater exchange{{cite|dirac:mpcps:1930}} + Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data{{cite|ceperley1980}}{{cite|perdewzunger1981}}
|-
|SL || Slater exchange only{{cite|dirac:mpcps:1930}}, available since VASP.6.4.3
|-
|CA_C (or PZ_C)  || Correlation-only Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data{{cite|ceperley1980}}{{cite|perdewzunger1981}}, available since VASP.6.4.3
|-
|VW  || Slater exchange{{cite|dirac:mpcps:1930}} + Vosko-Wilk-Nusair correlation (VWN5){{cite|vosko1980}}
|-
|HL  || Slater exchange{{cite|dirac:mpcps:1930}} + Hedin-Lundqvist correlation{{cite|hedin1971}}
|-
|WI  || Slater exchange{{cite|dirac:mpcps:1930}} + Wigner correlation{{cite|Wigner:tfs:1938}} (Eq. (3.2) in Ref. {{cite|pines:ssp:1955}})
|-
|LIBXC (or LI)  || Any LDA from Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}} (the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags are also required)
|-
|}
:'''GGA functionals:'''
:{| border="1" cellspacing="0" cellpadding="5"
:{| border="1" cellspacing="0" cellpadding="5"
<!-- these first three options have been obsolete since VASP.4.X
<!-- these first three options have been obsolete since VASP.4.X
Line 16: Line 50:
|LM  || Langreth-Mehl-Hu
|LM  || Langreth-Mehl-Hu
|- -->
|- -->
|{{TAG|GGA}} || Description
|LIBXC (or LI)  || Any GGA from Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}} (the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags are also required)
|-
|-
|91  || Perdew - Wang 91<ref name="perdew1992"/>
|91  || Perdew-Wang (PW91){{cite|perdew:prb:1991}}
|-
|-
|PE  || Perdew-Burke-Ernzerhof<ref name="perdew1996"/>
|PE  || Perdew-Burke-Ernzerhof (PBE){{cite|perdew:prl:1996}}
|-
|-
|AM  || AM05<ref name="armiento:prb:05"/><ref name="mattson:jcp:08"/><ref name="mattson:prb:09"/>
|PBE_X || Exchange-only Perdew-Burke-Ernzerhof (PBEx){{cite|perdew:prl:1996}}, available since VASP.6.4.3
|-
|-
|HL  || Hendin-Lundqvist<ref name="hedin1971"/>
|PBE_C || Correlation-only Perdew-Burke-Ernzerhof (PBEc){{cite|perdew:prl:1996}}, available since VASP.6.4.3
|-
|-
|CA || Ceperley-Alder<ref name="ceperley1980"/>
|RE || Revised PBE from Zhang and Yang (revPBE){{cite|zhang1998}}
|-
|-
|PZ || Ceperley-Alder, parametrization of Perdew-Zunger<ref name="perdewzunger1981"/>
|RP || Revised PBE from Hammer et al. (RPBE){{cite|hammer1999}}
|-
|-
|WI || Wigner<ref name="wigner1937"/>
|PS || Revised PBE for solids (PBEsol){{cite|perdew:prl:2008}}
|-
|-
|RP || revised Perdew-Burke-Ernzerhof (RPBE)<ref name="hammer1999"/> with Pade Approximation
|AM || Armiento-Mattson (AM05){{cite|armiento:prb:05}}{{cite|mattson:jcp:08}}{{cite|mattson:prb:09}}
|-
|-
|RE || revPBE<ref name="zhang1998"/>
|B3 || B3LYP{{cite|stephens:jpc:1994}} with VWN3{{cite|vosko1980}} for LDA correlation
|-
|-
|VW || Vosko-Wilk-Nusair<ref name="vokso1980"/> (VWN)
|B5 || B3LYP{{cite|stephens:jpc:1994}} with VWN5{{cite|vosko1980}} for LDA correlation
|-
|-
|B3  || B3LYP<ref name="b3lyp"/>, where LDA part is with VWN3-correlation
|Designed to be combined with {{TAG|nonlocal vdW-DF functionals}}: ||
|-
|-
|B5 || B3LYP, where LDA part is with VWN5-correlation
|OR || optPBE exchange{{cite|klimes:jpcm:2010}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|BF  || BEEF<ref name="beef2012"/>, xc (with libbeef)
|BO (with {{TAGBL|PARAM1}}=0.1833333333 and {{TAGBL|PARAM2}}=0.22) || optB88 exchange{{cite|klimes:jpcm:2010}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|CO || no exchange-correlation
|MK || optB86b exchange{{cite|klimes:prb:2011}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|PS || Perdew-Burke-Ernzerhof revised for solids (PBEsol)<ref name="perdew:prl:08"/>
|ML || PW86R exchange{{cite|lee:prb:2010}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|LIBXC (or LI) || any LDA or GGA from Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}}
|CX || CX (LV-PW86r) exchange{{cite|berland:prb:2014}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|intended for vdW functionals: ||
|BF  || BEEF (requires VASP compiled with [[Precompiler_options#-Dlibbeef|-Dlibbeef]]){{cite|beef2012}}
|-
|-
|OR  || optPBE<ref name="klimes2010"/>
|}
|-
 
|BO  || optB88<ref name="klimes2010"/>
<!--
|-
:'''Short-range functionals for range-separated ACFDT-RPA (WARNING: not extensively tested and should be used only after careful inspection of the source code):'''
|MK  || optB86b<ref name="klimes2010"/>
:{| border="1" cellspacing="0" cellpadding="5"
|-
|special settings for range-separated ACFDT: ||
|-
|-
|RA  || new RPA Perdew Wang
|RA  || New RPA Perdew-Wang
|-
|-
|03 || range-separated ACFDT (LDA - sr RPA) <math>\mu=0.3 \AA^3</math>
|PL || New RPA+ Perdew-Wang
|-
|-
|05 || range-separated ACFDT (LDA - sr RPA) <math>\mu=0.5 \AA^3</math>
|03 || Range-separated ACFDT (LDA - sr RPA) <math>\mu=0.3~\AA^3</math>  
|-
|-
|10 || range-separated ACFDT (LDA - sr RPA) <math>\mu=1.0 \AA^3</math>  
|05 || Range-separated ACFDT (LDA - sr RPA) <math>\mu=0.5~\AA^3</math>
|-
|-
|20 || range-separated ACFDT (LDA - sr RPA) <math>\mu=2.0 \AA^3</math>
|10 || Range-separated ACFDT (LDA - sr RPA) <math>\mu=1.0~\AA^3</math>  
|-
|-
|PL || new RPA+ Perdew Wang
|20 || Range-separated ACFDT (LDA - sr RPA) <math>\mu=2.0~\AA^3</math>
|}
|}
-->


The tag LIBXC (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}}. Along with {{TAG|GGA}}=LIBXC, it is also necessary to specify the tags {{TAG|LIBXC1}} and {{TAG|LIBXC2}} that specify the particular functional. Note that it is necessary to have [[Installing_VASP.6.X.X#For_Libxc_.28optional.29|Libxc installed]] and VASP.6.3.0 or higher compiled with ([[Precompiler flags#Optional|-DUSELIBXC]]).
== Related tags and articles ==
 
{{TAG|LIBXC1}},
The tags AM (AM05) and PS (PBEsol) are only supported by VASP.5.X. The AM05 functional and the PBEsol functional are constructed using different principles, but both aim at a decent description of yellium surface energies. In practice, they yield quite similar results for most materials. Both are available for spin polarized calculations.
{{TAG|LIBXC2}},
 
{{TAG|ALDAX}},
The special flags for range separated RPA have not been extensively tested and should be used only
{{TAG|ALDAC}},
after careful inspection of the source code. The flags allow to select range separated ACFDT calculations, where
{{TAG|AGGAX}},
a short range local (DFT-like) exchange and correlation kernel is added to the long range exchange and RPA correlation energy.
{{TAG|AGGAC}},
{{TAG|METAGGA}},
{{TAG|XC}}


{{sc|GGA|Examples|Examples that use this tag}}
{{sc|GGA|Examples|Examples that use this tag}}


== References ==
== References ==
<references>
<references/>
<ref name="armiento:prb:05">[http://link.aps.org/doi/10.1103/PhysRevB.72.085108 R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).]</ref>
 
<ref name="mattson:jcp:08">[http://dx.doi.org/10.1063/1.2835596 A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, and T.R. Mattsson, J. Chem. Phys. 128, 084714 (2008).]</ref>
<ref name="mattson:prb:09">[http://link.aps.org/doi/10.1103/PhysRevB.79.155101 A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).]</ref>
<ref name="perdew:prl:08">[http://link.aps.org/doi/10.1103/PhysRevB.79.155107 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).]</ref>
<ref name="hedin1971">[http://iopscience.iop.org/article/10.1088/0022-3719/4/14/022/meta;jsessionid=6F1B9F8BE588208D706AAD78E6F0E49A.c2.iopscience.cld.iop.org L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).]</ref>
<ref name="ceperley1980">[http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.45.566 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).]</ref>
<ref name="perdewzunger1981">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.23.5048 J. P. Perdew and Alex Zunger, Phys. Rev. B 23, 5048 (1981).]</ref>
<ref name="wigner1937">[http://aip.scitation.org/doi/10.1063/1.1750108 E. Wigner, J. Chem. Phys. 5, 726 (1937).]</ref>
<ref name="hammer1999">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.59.7413 B. Hammer, L. B. Hansen and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).]</ref>
<ref name="vokso1980">[http://www.nrcresearchpress.com/doi/abs/10.1139/p80-159#.WJLvYmf950w S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980).]</ref>
<ref name="b3lyp">[http://aip.scitation.org/doi/10.1063/1.464913 A. D. Becke, J. Chem. Phys. 98, 5648 (1993).]</ref>
<ref name="beef2012">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.235149 Jess Wellendorff, Keld T. Lundgaard, Andreas Møgelhøj, Vivien Petzold, David D. Landis, Jens K. Nørskov, Thomas Bligaard and Karsten W. Jacobsen, Phys. Rev. B 85, 235149 (2012).]</ref>
<ref name="zhang1998">[http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.890 Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).]</ref>
<ref name="klimes2010">[http://iopscience.iop.org/article/10.1088/0953-8984/22/2/022201/meta J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Cond. Matt. 22, 022201 (2010).]</ref>
<ref name="perdew1992">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.45.13244 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).]</ref>
<ref name="perdew1996">[http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.3865 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).]</ref>
</references>
----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]][[Category:XC Functionals]][[Category:GGA]]
[[Category:INCAR tag]][[Category:Exchange-correlation functionals]][[Category:GGA]]

Latest revision as of 12:25, 16 October 2024

GGA = PE | RP | PS | AM | LIBXC | ...
Default: GGA = exchange-correlation functional in accordance with the POTCAR file 

Description: GGA specifies a LDA or GGA exchange-correlation functional.


This tag was added to perform GGA calculations with pseudopotentials generated with conventional LDA reference configurations.

Important: VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the POTCAR file. For this to work, the original LEXCH tag must not be modified in the POTCAR file.

A few points should be noted:

  • The LIBXC option (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc[1][2][3]. Along with GGA=LIBXC, it is also necessary to specify the LIBXC1 and LIBXC2 tags that specify the particular functional. Note that it is necessary to have Libxc >= 5.2.0 installed and VASP.6.3.0 or higher compiled with precompiler options.
  • When the OR, BO, MK, ML or CX GGA is used in combination with the nonlocal vdW-DF functional of Dion et al.[4], the GGA component of the correlation should in principle be turned off with AGGAC=0 (see nonlocal vdW-DF functionals).

The possible options for the GGA tag are:

LDA functionals:
CA (or PZ) Slater exchange[5] + Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data[6][7]
SL Slater exchange only[5], available since VASP.6.4.3
CA_C (or PZ_C) Correlation-only Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data[6][7], available since VASP.6.4.3
VW Slater exchange[5] + Vosko-Wilk-Nusair correlation (VWN5)[8]
HL Slater exchange[5] + Hedin-Lundqvist correlation[9]
WI Slater exchange[5] + Wigner correlation[10] (Eq. (3.2) in Ref. [11])
LIBXC (or LI) Any LDA from Libxc[1][2][3] (the LIBXC1 and LIBXC2 tags are also required)
GGA functionals:
LIBXC (or LI) Any GGA from Libxc[1][2][3] (the LIBXC1 and LIBXC2 tags are also required)
91 Perdew-Wang (PW91)[12]
PE Perdew-Burke-Ernzerhof (PBE)[13]
PBE_X Exchange-only Perdew-Burke-Ernzerhof (PBEx)[13], available since VASP.6.4.3
PBE_C Correlation-only Perdew-Burke-Ernzerhof (PBEc)[13], available since VASP.6.4.3
RE Revised PBE from Zhang and Yang (revPBE)[14]
RP Revised PBE from Hammer et al. (RPBE)[15]
PS Revised PBE for solids (PBEsol)[16]
AM Armiento-Mattson (AM05)[17][18][19]
B3 B3LYP[20] with VWN3[8] for LDA correlation
B5 B3LYP[20] with VWN5[8] for LDA correlation
Designed to be combined with nonlocal vdW-DF functionals:
OR optPBE exchange[21] + PBE correlation[13]
BO (with PARAM1=0.1833333333 and PARAM2=0.22) optB88 exchange[21] + PBE correlation[13]
MK optB86b exchange[22] + PBE correlation[13]
ML PW86R exchange[23] + PBE correlation[13]
CX CX (LV-PW86r) exchange[24] + PBE correlation[13]
BF BEEF (requires VASP compiled with -Dlibbeef)[25]


Related tags and articles

LIBXC1, LIBXC2, ALDAX, ALDAC, AGGAX, AGGAC, METAGGA, XC

Examples that use this tag

References

  1. a b c M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Comput. Phys. Commun., 183, 2272 (2012).
  2. a b c S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX, 7, 1 (2018).
  3. a b c https://libxc.gitlab.io
  4. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
  5. a b c d e P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
  6. a b D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
  7. a b J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
  8. a b c S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
  9. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
  10. E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
  11. D. Pines, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1955), Vol. I, p. 367.
  12. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
  13. a b c d e f g h J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
  14. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
  15. B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
  16. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
  17. R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
  18. A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills, and T. R. Mattsson, J. Chem. Phys. 128, 084714 (2008).
  19. A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).
  20. a b P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  21. a b J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
  22. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
  23. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).
  24. K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014).
  25. J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, Jens K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).