Time-propagation algorithms in molecular dynamics
In molecular dynamics simulations the positions and velocities are monitored as functions of time . This time dependence is obtained by integrating Newton's equations of motion. To solve the equations of motions a color mix of integration algorithms was developed. The time dependence of a particle can be expressed in a Taylor expansion
A backward propagation in time by a time step can be obtained in a similar way
Adding these two equation gives and rearrangement gives the Verlet algorithm
The Verlet algorithm can be rearranged to the Velocity-Verlet algorithm by inserting
Velocity-Verlet Integration scheme
MDALGO | thermostat | integration algorithm |
---|---|---|
0 | Nose-Hoover | Velocity-Verlet |
1 | Andersen | Leap-Frog |
2 | Nose-Hoover | Leap-Frog |
3 | Langevin | Velocity-Verlet |
4 | NHC | Leap-Frog |
5 | CSVR | Leap-Frog |