Slow-growth approach
The free-energy profile along a geometric parameter can be scanned by an approximate slow-growth approach[1]. In this method, the value of is linearly changed from the value characteristic for the initial state (1) to that for the final state (2) with a velocity of transformation . The resulting work needed to perform a transformation can be computed as:
In the limit of infinitesimally small , the work corresponds to the free-energy difference between the the final and initial state. In the general case, is the irreversible work related to the free energy via Jarzynski's identity[2]:
Note that calculation of the free-energy via this equation requires averaging of the term over many realizations of the transformation. Detailed description of the simulation protocol that employs Jarzynski's identity can be found in reference [3].
- For a slow-growth simulation, one has to perform a calcualtion very similar to Constrained molecular dynamics but additionally the transformation velocity-related INCREM-tag for each geometric parameter with STATUS=0 has to be specified.
VASP can handle multiple (even redundant) constraints. Note, however, that a too large number of constraints can cause problems with the stability of the SHAKE algorithm. In problematic cases, it is recommended to use a looser convergence criterion (see SHAKETOL) and to allow a larger number of iterations (see SHAKEMAXITER) in the SHAKE algorithm. Hard constraints may also be used in metadynamics simulations (see MDALGO=11 | 21). Information about the constraints is written onto the REPORT-file: check the lines following the string: Const_coord