Estimation of J magnetic coupling
Description: Estimation of the J magnetic exchange coupling using the GGA+U method.
Switching off the symmetry (ISYM = 0) is often necessary to generate different magnetic configurations.
Exercise : Study the change of the 180° superexchange coupling J2 between the next nearest neighbors (dNi-Ni = 4.17 A) by varying the Ueff value. The following equation J2 = (EFM - EAFM) / 12 expresses the super exchange coupling as a function of the energy difference of the antiferromagnetic (AFM) and ferromagnetic (FM) configurations. In this case, the superexchange coupling J1 between the nearest neighbors is neglected. The theoretical results can be compared to the experimental one : J2 = 19.01 meV (Hutchings M. T., Samuelsen E. J., Phys. Rev. B 6, 9, 1972, 3447)
- INCAR
NiO GGA+U AFM SYSTEM = "NiO" Electronic minimization ENCUT = 450 EDIFF = 1E-4 LORBIT = 11 LREAL = .False. ISTART = 0 ISYM = 0 NELMIN = 6 DOS ISMEAR = -5 Magnetism ISPIN = 2 MAGMOM = 2.0 -2.0 2*0 # AFM conf. # MAGMOM = 2*2.0 2*0 # FM conf. Mixer AMIX = 0.2 BMIX = 0.00001 AMIX_MAG = 0.8 BMIX_MAG = 0.00001 GGA+U LDAU = .TRUE. LDAUTYPE = 2 LDAUL = 2 -1 LDAUU = 5.00 0.00 LDAUJ = 0.00 0.00 LDAUPRINT = 2 LMAXMIX = 4
- KPOINTS
k-points 0 gamma 4 4 4 0 0 0
- POSCAR
NiO 4.17 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 2 2 Cartesian 0.0 0.0 0.0 1.0 1.0 1.0 0.5 0.5 0.5 1.5 1.5 1.5
Necessarely, the J magnetic coupling decreases with the increasing of the Ueff value. To assess the obtain value, similar calculations could be done using a hybrid functional.
To the list of examples or to the main page