Jump to content
Toggle sidebar
Search
Log in
Personal tools
Log in
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
Requests for technical support from the VASP team should be posted in the
VASP Forum
.
Angular functions: Difference between revisions
Page
Discussion
English
Read
View source
View history
More
Read
View source
View history
Help
From VASP Wiki
Visual
Wikitext
Revision as of 17:33, 13 January 2017
(
view source
)
Vaspmaster
(
talk
|
contribs
)
No edit summary
← Older edit
Revision as of 17:53, 13 January 2017
(
view source
)
Vaspmaster
(
talk
|
contribs
)
No edit summary
Newer edit →
Line 65:
Line 65:
|+ hybrid angular functions
|+ hybrid angular functions
|-
|-
| sp || sp-1 || <math>\frac{1}{\sqrt 2}\rm s+\frac{1}{\sqrt 2}\rm p_x</math>
| sp
|
align="left" width="80"
| sp-1 || <math>\frac{1}{\sqrt 2}\rm s+\frac{1}{\sqrt 2}\rm p_x</math>
|-
|-
|style="border-bottom:1px solid"|
|style="border-bottom:1px solid"|
Revision as of 17:53, 13 January 2017
real spherical harmonics
l
m
Name
Y
lm
0
1
s
1
4
π
{\displaystyle \frac{1}{\sqrt{4\pi}}}
1
-1
py
3
4
π
y
r
{\displaystyle \sqrt{\frac{3}{4\pi}}\frac{y}{r}}
1
0
pz
3
4
π
z
r
{\displaystyle \sqrt{\frac{3}{4\pi}}\frac{z}{r}}
1
1
py
3
4
π
x
r
{\displaystyle \sqrt{\frac{3}{4\pi}}\frac{x}{r}}
2
-2
dxy
1
2
15
π
x
y
r
2
{\displaystyle \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2}}
2
-1
dyz
1
2
15
π
y
z
r
2
{\displaystyle \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2}}
2
0
dz2
1
4
5
π
3
z
2
−
r
2
r
2
{\displaystyle \frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{3z^2-r^2}{r^2}}
2
1
dxz
1
2
15
π
z
x
r
2
{\displaystyle \frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{zx}{r^2}}
2
2
dx2-y2
1
4
15
π
x
2
−
y
2
r
2
{\displaystyle \frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2}}
3
-3
fy(3x2-y2)
1
4
35
2
π
(
3
x
2
−
y
2
)
y
r
3
{\displaystyle \frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(3x^2-y^2)y}{r^3}}
3
-2
fxyz
1
2
105
π
x
y
z
r
3
{\displaystyle \frac{1}{2}\sqrt{\frac{105}{\pi}}\frac{xyz}{r^3}}
3
-1
fyz2
1
4
21
2
π
(
5
z
2
−
r
2
)
y
r
3
{\displaystyle \frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)y}{r^3}}
3
0
fz3
1
4
7
π
(
5
z
2
−
3
r
2
)
z
r
3
{\displaystyle \frac{1}{4}\sqrt{\frac{7}{\pi}}\frac{(5z^2-3r^2)z}{r^3}}
3
1
fxz2
1
4
21
2
π
(
5
z
2
−
r
2
)
x
r
3
{\displaystyle \frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)x}{r^3}}
3
2
fz(x2-y2)
1
4
105
π
(
x
2
−
y
2
)
z
r
3
{\displaystyle \frac{1}{4}\sqrt{\frac{105}{\pi}}\frac{(x^2-y^2)z}{r^3}}
3
3
fx(x2-3y2)
1
4
35
2
π
(
x
2
−
3
y
2
)
x
r
3
{\displaystyle \frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(x^2-3y^2)x}{r^3}}
hybrid angular functions
sp
sp-1
1
2
s
+
1
2
p
x
{\displaystyle \frac{1}{\sqrt 2}\rm s+\frac{1}{\sqrt 2}\rm p_x}
sp-2
1
2
s
−
1
2
p
x
{\displaystyle \frac{1}{\sqrt 2}\rm s-\frac{1}{\sqrt 2}\rm p_x}
sp2
sp2-1
1
3
s
−
1
6
p
x
+
1
2
p
y
{\displaystyle \frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x+\frac{1}{\sqrt 2}\rm p_y}
sp2-2
1
3
s
−
1
6
p
x
−
1
2
p
y
{\displaystyle \frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x-\frac{1}{\sqrt 2}\rm p_y}
sp2-2
1
3
s
+
2
6
p
x
{\displaystyle \frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm p_x}
sp3
sp3-1
1
2
(
s
+
p
x
+
p
y
+
p
z
)
{\displaystyle \frac{1}{2}(\rm s+\rm p_x+\rm p_y+\rm p_z)}
sp3-2
1
2
(
s
+
p
x
−
p
y
−
p
z
)
{\displaystyle \frac{1}{2}(\rm s+\rm p_x-\rm p_y-\rm p_z)}
sp3-2
1
2
(
s
−
p
x
+
p
y
−
p
z
)
{\displaystyle \frac{1}{2}(\rm s-\rm p_x+\rm p_y-\rm p_z)}
sp3-4
1
2
(
s
−
p
x
−
p
y
+
p
z
)
{\displaystyle \frac{1}{2}(\rm s-\rm p_x-\rm p_y+\rm p_z)}
sp3d
sp3d-1
1
3
s
−
1
6
p
x
+
1
2
p
y
{\displaystyle \frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x+\frac{1}{\sqrt 2}\rm p_y}
sp3d-2
1
3
s
−
1
6
p
x
−
1
2
p
y
{\displaystyle \frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x-\frac{1}{\sqrt 2}\rm p_y}
sp3d-3
1
3
s
+
2
6
p
x
{\displaystyle \frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm p_x}
sp3d-4
1
2
p
z
+
1
2
d
z
2
{\displaystyle \frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 2}\rm d_{z^2}}
sp3d-5
−
1
2
p
z
+
2
2
d
z
2
{\displaystyle -\frac{1}{\sqrt 2}\rm p_z+\frac{2}{\sqrt 2}\rm d_{z^2}}
sp3d2
sp3d2-1
1
6
s
−
1
2
p
x
−
1
1
2
d
z
2
+
1
2
d
x
2
−
y
2
{\displaystyle \frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_x-\frac{1}{\sqrt 12}\rm d_{z^2}+\frac{1}{2}\rm d_{x^2-y^2}}
sp3d2-2
1
6
s
+
1
2
p
x
−
1
1
2
d
z
2
+
1
2
d
x
2
−
y
2
{\displaystyle \frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_x-\frac{1}{\sqrt 12}\rm d_{z^2}+\frac{1}{2}\rm d_{x^2-y^2}}
sp3d2-3
1
6
s
−
1
2
p
y
−
1
1
2
d
z
2
−
1
2
d
x
2
−
y
2
{\displaystyle \frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_y-\frac{1}{\sqrt 12}\rm d_{z^2}-\frac{1}{2}\rm d_{x^2-y^2}}
sp3d2-4
1
6
s
+
1
2
p
y
−
1
1
2
d
z
2
−
1
2
d
x
2
−
y
2
{\displaystyle \frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_y-\frac{1}{\sqrt 12}\rm d_{z^2}-\frac{1}{2}\rm d_{x^2-y^2}}
sp3d2-5
1
6
s
−
1
2
p
z
+
1
3
d
z
2
{\displaystyle \frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 3}\rm d_{z^2}}
sp3d2-6
1
6
s
+
1
2
p
z
+
1
3
d
z
2
{\displaystyle \frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 3}\rm d_{z^2}}