Category:Dielectric properties: Difference between revisions

From VASP Wiki
Line 58: Line 58:


====ALGO = CHI====
====ALGO = CHI====
Here the frequency dielectric function is computed at the independent particle level but starting from a GW calculation. VASP will compute the polarizability <math>\chi</math> and then use <math>\epsilon_{\mathbf G\mathbf G'}(\mathbf q,\omega) = \delta_{\mathbf G\mathbf G'} - v(\mqthbf q+\mathbf G)\chi_{\mathbf G\mathbf G'}(\mathbf q,\omega)</math>.
within the Random-Phase Approximation (RPA) by setting {{TAG|ALGO}}=Chi.


====ALGO = BSE====
====ALGO = BSE====

Revision as of 14:00, 18 October 2023

Introduction

Optics - response to a varying E-field (absorption, reflectance, MOKE)

Methods based on screened interaction in solids (MBPT)

Most general definition of epsilon D=epsilon E

Methods for computing

Static response: Density functional perturbation Theory (DFPT) and Finite differences based methods

LEPSILON

By setting LEPSILON=.True., VASP uses DFPT to compute the static ion-clamped dielectric matrix with or without local field effects. Derivatives are evaluated using Sternheimer equations, avoiding the explicit computation of derivatives of the periodic part of the wave function. This method does not require the inclusion of empty states via the NBANDS parameter.

At the end of the calculation the both the values of including (LRPA=.True.) or excluding (LRPA=.False.) local-field effects are printed in the OUTCAR file. Users can perform a consistency check by comparing the values with no local field to the zero frequency results for obtained from a calculation with LOPTICS=.True..

LCALCEPS

With LCALCEPS=.True., the dielectric tensor is computed from the derivative of the polarization, using

However, here the derivative is evaluated explicitly by employing finite-differences. The direction and intensity of the perturbing electric field has to be specified in the INCAR using the EFIELD_PEAD variable. As with the previous method, at the end of the calculation VASP will write the dielectric tensor in the OUTCAR file. Control over the inclusion of local-field effects is done with the variable LRPA.


Dynamical response

LOPITCS

The variable LOPTICS allows for the calculation of the frequency dependent dielectric function once the ground state is computed. It uses the explicit expression to evaluate the imaginary part of

while the real part is evaluated using the Kramers-Kroning relation. At this level there are no effects coming from local fields.

This method requires a relatively large number of empty states, controlled by the variable NBANDS in the INCAR file and it should be checked for convergence.

Furthermore, the INCAR should also include values for CSHIFT (the broadening applied to the Lorentzian function which replaces the -function), and NEDOS (the frequency grid for ).

ALGO = TDHF

This option performs a time-dependent Hartree-Fock or DFT calculation. It follows the Casida equation and uses a Fourier transform of the time-evolving dipoles to compute .

The number of NBANDS controls how many bands are present in the time-evolution. This does not need to be as high as when LOPTICS is active, and only a few bands above the band gap need to be included.

The choice of time-dependent kernel is controlled by AEXX, HFSCREEN, and LFXC variables. For calculations using hybrid functionals, AEXX controls the fraction of exact exchange used in the exchange correlation potential, while HFSCREEN specifies the range-separation parameter. For a pure TDDFT calculation, LFXC uses the local exchange-correlation kernel in the time-evolution equations.

ALGO = TIMEEV

Uses a delta-pulse electric field to probe all transitions and calculate the dielectric function by following the evolution in time of the dipole momenta. This algorithm is able to fully reproduce the absorption spectra from standard Bethe-Salpeter calculations by setting the correct time-dependent kernel with LHARTREE=.True. and LFXC=.True.

The time step is controlled automatically by the CSHIFT and PREC variables. This means that the smaller the value of CSHIFT and the more accurate the level of precision chosen by the user, the higher the number of time steps that VASP will perform, and so the higher the cost of the calculation.

The number of valence and conduction bands involved in the time propagation are set by the NBANDSO and NBANDSV variables, respectively. Once again, users are advised to choose a small number of bands near the band gap if they wish to reproduce optical measurements.

Finally, the maximum energy used in both the Fourier transform and in calculating the frequency dependent dielectric function is set by OMEGAMAX, and the sampling of the frequency grid is controlled by NEDOS.

ALGO = CHI

Here the frequency dielectric function is computed at the independent particle level but starting from a GW calculation. VASP will compute the polarizability and then use Failed to parse (Conversion error. Server ("cli") reported: "[INVALID]"): {\displaystyle \epsilon_{\mathbf G\mathbf G'}(\mathbf q,\omega) = \delta_{\mathbf G\mathbf G'} - v(\mqthbf q+\mathbf G)\chi_{\mathbf G\mathbf G'}(\mathbf q,\omega)} .

within the Random-Phase Approximation (RPA) by setting ALGO=Chi.

ALGO = BSE

Setting ALGO=BSE computes the macroscopic dielectric function by solving the Bethe-Salpeter equations. Here the electron-hole pairs are treated a new quasi-particle, an exciton, and the dielectric function is built using the new eigenvectors () and eigenvalues ()

where is the overlap between exciton states of indices and (in general the BSE Hamiltonian is not hermitian, so eigenstates associated to different eigenvalues are not necessarily orthogonal).

The number of valence and conduction states which are included in the BSE Hamiltonian is controlled by the variables NBANDSO and NBANDSV, respectively. Note that normally only a few bands above and below the band gap are needed to converge the optical spectrum, so users should be careful in setting up these two variables. Otherwise the calculation might run out of memory.

For comparison with optical experiments (e.g. absorption, MOKE, reflectance), is the photon momentum and usually it is taken in the limit. Furthermore, the coupling between the resonant and anti-resonant terms can be switched off, in what is called the Tamm-Dancoff approximation. This approximation can be activated with the variable ANTIRES set to 0. Setting this variable to 1 or 2 will include the coupling, but increase the computational cost.

Level of approximation

Micro-macro connection - Including local fields (GG' vs GG or 00, to confirm)

Inhomogeniety - Long wavelength vs short

Local fields in the Hamiltonian

Ion-clamped vs relaxed/dressed dielectric function

Static vs dynamic

Density-density versus current-current response functions

Relation to observables

Polarizability

Optical conductivity

Optical absorption

Reflectance

MOKE

Combination with other perturbations

Atomic displacements

Strain

Subcategories

This category has the following 2 subcategories, out of 2 total.