Category:Bethe-Salpeter equations: Difference between revisions
No edit summary |
No edit summary |
||
Line 109: | Line 109: | ||
=== Time evolution === | === Time evolution === | ||
The alternative approach is to formulate the BSE as the initial-value problem for the macroscopic polarizability. This approach converges to the same solution as the exact diagonalization and can be used for obtaining the absorption spectrum, but does not yield the eigenvectors, which can be limiting for the analysis of the excitons. The advantage of this approach is the scaling with the size of the BSE Hamiltonian | The alternative approach is to formulate the BSE as the initial-value problem for the macroscopic polarizability. This approach converges to the same solution as the exact diagonalization and can be used for obtaining the absorption spectrum, but does not yield the eigenvectors, which can be limiting for the analysis of the excitons. The advantage of this approach is the quadratic scaling with the size of the BSE Hamiltonian <math>N_{rank}^2</math>. | ||
The following features are currently supported: | The following features are currently supported: |
Revision as of 16:20, 16 October 2023
The formalism of the Bethe-Salpeter equation (BSE) allows for calculating the polarizability with the electron-hole interaction and constitutes the state of the art for calculating absorption spectra in solids.
Theory
Bethe-Salpeter equation
In the BSE, the excitation energies correspond to the eigenvalues of the following linear problem
The matrices and describe the resonant and anti-resonant transitions between the occupied and unoccupied states
The energies and orbitals of these states are usually obtained in a calculation, but DFT and Hybrid functional calculations can be used as well. The electron-electron interaction and electron-hole interaction are described via the bare Coulomb and the screened potential .
The coupling between resonant and anti-resonant terms is described via terms and
Due to the presence of this coupling, the Bethe-Salpeter Hamiltonian is non-Hermitian.
Tamm-Dancoff approximation
A common approximation to the BSE is the Tamm-Dancoff approximation (TDA), which neglects the coupling between resonant and anti-resonant terms, i.e., and . Hence, the TDA reduces the BSE to a Hermitian problem
In reciprocal space, the matrix is written as
where is the cell volume, is the bare Coulomb potential without the long-range part
and the screened Coulomb potential
Here, the dielectric function describes the screening in within the random-phase approximation (RPA)
Although the dielectric function is frequency-dependent, the static approximation is considered a standard for practical BSE calculations.
Macroscopic dielectric function
The macroscopic dielectric which accounts for the excitonic effects is found via eigenvalues and eigenvectors of the BSE
Scaling
The scaling of the BSE equation strongly limits its application for large systems. The main limiting factor is the diagonalization of the BSE Hamiltonian. The rank of the Hamiltonian is
- ,
where is the number of k-points in the Brillouin zone and and are the number of conduction and valence bands, respectively. The diagonalization of the matrix scales cubically with the matrix rank, i.e., .
Despite the fact that this matrix diagonalization is usually the bottleneck for bigger systems, the construction of the BSE Hamiltonian also scales unfavorably and can play a dominant role in big systems, i.e.,
- ,
where is the number of q-points and number of G-vectors.
Solution of BSE
Diagonalization
The exact diagonalization of the BSE Hamiltonian can be perform using various eigensolvers provided in ScaLAPACK, ELPA, and cuSolver libraries. The advantage of this approach is that the eigenvectors can be directly obtained and used for the analysis of the excitons.
The following features are currently supported:
- Obtaining the spectra and eigenvectors
- Calculations beyond Tamm-Dancoff approximation
- Calculations of for
- Fatband plot
Time evolution
The alternative approach is to formulate the BSE as the initial-value problem for the macroscopic polarizability. This approach converges to the same solution as the exact diagonalization and can be used for obtaining the absorption spectrum, but does not yield the eigenvectors, which can be limiting for the analysis of the excitons. The advantage of this approach is the quadratic scaling with the size of the BSE Hamiltonian .
The following features are currently supported:
- Obtaining the spectra
- Calculations beyond Tamm-Dancoff approximation
- Calculations of for
How to
- Practical guide for solving the BSE via diagonalization BSE calculations
References
Pages in category "Bethe-Salpeter equations"
The following 23 pages are in this category, out of 23 total.