Category:DFT+U: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
The semilocal LDA and GGA functionals often fail to describe systems with localized (strongly correlated) ''d'' and ''f''-electrons (this manifests itself primarily in the form of unrealistic one-electron energies and too small magnetic moments). In some cases this can be remedied by introducing a strong intra-atomic interaction in a (screened) Hartree-Fock like manner, as an on-site replacement of the semilocal functional. This approach is commonly known as the DFT+U method (traditionally called L(S)DA+U). | The semilocal LDA and GGA functionals often fail to describe systems with localized (strongly correlated) ''d'' and ''f''-electrons (this manifests itself primarily in the form of unrealistic one-electron energies and too small magnetic moments). In some cases this can be remedied by introducing a strong intra-atomic interaction in a (screened) Hartree-Fock like manner, as an on-site replacement of the semilocal functional. This approach is commonly known as the DFT+U method (traditionally called L(S)DA+U). | ||
== How to == | == How to == | ||
* | *{{TAG|LDAUTYPE}}. | ||
---- | ---- | ||
[[Category:VASP|LDA+U]][[Category:Exchange-correlation functionals]] | [[Category:VASP|LDA+U]][[Category:Exchange-correlation functionals]] |
Revision as of 18:19, 6 April 2022
Theoretical background
The semilocal LDA and GGA functionals often fail to describe systems with localized (strongly correlated) d and f-electrons (this manifests itself primarily in the form of unrealistic one-electron energies and too small magnetic moments). In some cases this can be remedied by introducing a strong intra-atomic interaction in a (screened) Hartree-Fock like manner, as an on-site replacement of the semilocal functional. This approach is commonly known as the DFT+U method (traditionally called L(S)DA+U).