LDAUTYPE: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 82: Line 82:
'''Warning''': it is important to be aware of the fact that when using the L(S)DA+U, in general the total energy will depend on the parameters <math>U</math> and <math>J</math> ({{TAG|LDAUU}} and {{TAG|LDAUJ}}, respectively). It is therefore not meaningful to compare the total energies resulting from calculations with different <math>U</math> and/or <math>J</math>, or <math>U-J</math> and in case of Dudarev's approach ({{TAG|LDAUTYPE}}=2).
'''Warning''': it is important to be aware of the fact that when using the L(S)DA+U, in general the total energy will depend on the parameters <math>U</math> and <math>J</math> ({{TAG|LDAUU}} and {{TAG|LDAUJ}}, respectively). It is therefore not meaningful to compare the total energies resulting from calculations with different <math>U</math> and/or <math>J</math>, or <math>U-J</math> and in case of Dudarev's approach ({{TAG|LDAUTYPE}}=2).


'''Note on bandstructure calculation''': the {{FILE|CHGCAR}} file contains only information up to angular momentum quantum number ''L''={{TAG|LMAXMIX}} for the [[LDAUTYPE#occmat|on-site PAW occupancy matrices]]. When the {{FILE|CHGCAR}} file is read and kept fixed in the course of the calculations ({{TAG|ICHARG}}=11), the results will be necessarily not identical to a selfconsistent run. The deviations are often large for L(S)DA+U calculations. For the calculation of band structures within the L(S)DA+U approach, it is hence strictly required to increase {{TAG|LMAXMIX}} to 4 (d elements) and 6 (f elements).
'''Note on bandstructure calculation''': the {{FILE|CHGCAR}} file contains only information up to angular momentum quantum number <math>\ell</math>={{TAG|LMAXMIX}} for the [[LDAUTYPE#occmat|on-site PAW occupancy matrices]]. When the {{FILE|CHGCAR}} file is read and kept fixed in the course of the calculations ({{TAG|ICHARG}}=11), the results will be necessarily not identical to a selfconsistent run. The deviations are often large for L(S)DA+U calculations. For the calculation of band structures within the L(S)DA+U approach, it is hence strictly required to increase {{TAG|LMAXMIX}} to 4 (d elements) and 6 (f elements).


== Related Tags and Sections ==
== Related Tags and Sections ==

Revision as of 15:34, 6 April 2022

LDAUTYPE = 1 | 2 | 4
Default: LDAUTYPE = 2 

Description: LDAUTYPE specifies which type of DFT+U approach will be used.


The semilocal LDA and GGA functionals often fail to describe systems with localized (strongly correlated) d and f-electrons (this manifests itself primarily in the form of unrealistic one-electron energies and too small magnetic moments). In some cases this can be remedied by introducing a strong intra-atomic interaction in a (screened) Hartree-Fock like manner, as an on-site replacement of the semilocal functional. This approach is commonly known as the DFT+U method. Setting LDAU=.TRUE. in the INCAR file switches on DFT+U. The first VASP DFT+U calculations, including some additional technical details on the VASP implementation, can be found in Ref. [1] (the original implementation was done by Olivier Bengone [2] and Georg Kresse).

  • LDAUTYPE=1: The rotationally invariant DFT+U introduced by Liechtenstein et al.[3]
This particular flavour of DFT+U is of the form
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): E_{{{\rm {HF}}}}={\frac {1}{2}}\sum _{{\{\gamma \}}}(U_{{\gamma _{1}\gamma _{3}\gamma _{2}\gamma _{4}}}-U_{{\gamma _{1}\gamma _{3}\gamma _{4}\gamma _{2}}}){{\hat n}}_{{\gamma _{1}\gamma _{2}}}{{\hat n}}_{{\gamma _{3}\gamma _{4}}}
and is determined by the PAW on-site occupancies
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {{\hat n}}_{{\gamma _{1}\gamma _{2}}}=\langle \Psi ^{{s_{2}}}\mid m_{2}\rangle \langle m_{1}\mid \Psi ^{{s_{1}}}\rangle
and the (unscreened) on-site electron-electron interaction
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): U_{{\gamma _{1}\gamma _{3}\gamma _{2}\gamma _{4}}}=\langle m_{1}m_{3}\mid {\frac {1}{|{\mathbf {r}}-{\mathbf {r}}^{\prime }|}}\mid m_{2}m_{4}\rangle \delta _{{s_{1}s_{2}}}\delta _{{s_{3}s_{4}}}
where |m⟩ are real spherical harmonics of angular momentum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \ell} =LDAUL.
The unscreened e-e interaction Uγ1γ3γ2γ4 can be written in terms of the Slater integrals Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): F^{0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): F^{2} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): F^{4} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): F^{6} (f-electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true e-e interaction, since in solids the Coulomb interaction is screened (especially Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): F^{0} ).
In practice these integrals are often treated as parameters, i.e., adjusted to reach agreement with experiment for a property like the equilibrium volume, the magnetic moment or the band gap. They are normally specified in terms of the effective on-site Coulomb- and exchange parameters, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): U and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle J} (LDAUU and LDAUJ, respectively). and can also be extracted from constrained-LSDA calculations.
These translate into values for the Slater integrals in the following way (as implemented in VASP at the moment):
- -
-
The essence of the DFT+U method consists of the assumption that one may now write the total energy as:
where the Hartree-Fock like interaction replaces the LSDA on site due to the fact that one subtracts a double counting energy , which supposedly equals the on-site LSDA contribution to the total energy,
  • LDAUTYPE=2: The simplified (rotationally invariant) approach to the DFT+U, introduced by Dudarev et al.[4]
This flavour of DFT+U is of the following form:
This can be understood as adding a penalty functional to the LSDA total energy expression that forces the on-site occupancy matrix in the direction of idempotency,
.
Real matrices are only idempotent when their eigenvalues are either 1 or 0, which for an occupancy matrix translates to either fully occupied or fully unoccupied levels.
Note: in Dudarev's approach the parameters and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle J} do not enter seperately, only the difference Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle U-J} is meaningful.
  • LDAUTYPE=4: same as LDAUTYPE=1, but LDA+U instead of LSDA+U (i.e. no LSDA exchange splitting).
In the LDA+U case the double counting energy is given by,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): E_{{{\mathrm {dc}}}}({\hat n})={\frac {U}{2}}{{\hat n}}_{{{\mathrm {tot}}}}({{\hat n}}_{{{\mathrm {tot}}}}-1)-{\frac {J}{2}}\sum _{\sigma }{{\hat n}}_{{{\mathrm {tot}}}}^{\sigma }({{\hat n}}_{{{\mathrm {tot}}}}^{\sigma }-1).

Warning: it is important to be aware of the fact that when using the L(S)DA+U, in general the total energy will depend on the parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): U and (LDAUU and LDAUJ, respectively). It is therefore not meaningful to compare the total energies resulting from calculations with different Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): U and/or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle J} , or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle U-J} and in case of Dudarev's approach (LDAUTYPE=2).

Note on bandstructure calculation: the CHGCAR file contains only information up to angular momentum quantum number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \ell} =LMAXMIX for the on-site PAW occupancy matrices. When the CHGCAR file is read and kept fixed in the course of the calculations (ICHARG=11), the results will be necessarily not identical to a selfconsistent run. The deviations are often large for L(S)DA+U calculations. For the calculation of band structures within the L(S)DA+U approach, it is hence strictly required to increase LMAXMIX to 4 (d elements) and 6 (f elements).

Related Tags and Sections

LDAU, LDAUL, LDAUU, LDAUJ, LDAUPRINT, LMAXMIX

Examples that use this tag

References


Contents