SMASS: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 8: Line 8:
* {{TAG|SMASS}}=-2
* {{TAG|SMASS}}=-2
:For {{TAG|SMASS}}=-2 the initial velocities are kept constant. This allows to calculate the energy for a set of different linear dependent positions (for instance [[frozen phonons]], or [[dimers]] with varying bond-length).
:For {{TAG|SMASS}}=-2 the initial velocities are kept constant. This allows to calculate the energy for a set of different linear dependent positions (for instance [[frozen phonons]], or [[dimers]] with varying bond-length).
:'''Mind''': if {{TAG|SMASS}}=-2 the actual steps taken are {{TAG|POTIM}}×(velocities-read-from-the-{{FILE|POSCAR}}. To avoid ambiguities, set {{TAG|POTIM}}=1.
:'''Mind''': if {{TAG|SMASS}}=-2 the actual steps taken are {{TAG|POTIM}}×(velocities-read-from-the-{{FILE|POSCAR}}). To avoid ambiguities, set {{TAG|POTIM}}=1.


* {{TAG|SMASS}}=-1
* {{TAG|SMASS}}=-1

Revision as of 19:03, 29 March 2011

SMASS = -3 | -2 | -1 | [real] ≥ 0
Default: SMASS = -3 

Description: SMASS controls the velocities during an ab-initio molecular dynamics run.


For SMASS=-3 a micro canonical ensemble is simulated (constant energy molecular dynamics). The calculated Hellmann-Feynman forces serve as an acceleration acting onto the ions. The total free energy (i.e. free electronic energy + Madelung energy of ions + kinetic energy of ions) is conserved.
For SMASS=-2 the initial velocities are kept constant. This allows to calculate the energy for a set of different linear dependent positions (for instance frozen phonons, or dimers with varying bond-length).
Mind: if SMASS=-2 the actual steps taken are POTIM×(velocities-read-from-the-POSCAR). To avoid ambiguities, set POTIM=1.
In this case the velocities are scaled each NBLOCK step (starting at the first step i.e. MOD(NSTEP,NBLOCK)=1) to the temperature: T=TEBEG+(TEEND-TEBEG)×NSTEP/NSW,
where NSTEP is the current step (starting from 1). This allows a continuous increase or decrease of the kinetic energy. In the intermediate period a micro-canonical ensemble is simulated.
For SMASS≥0, a canonical ensemble is simulated using the algorithm of Nosé. The Nosé mass controls the frequency of the temperature oscillations during the simulation.[1][2][3] For SMASS=0, a Nosé-mass corresponding to period of 40 time steps will be chosen. The Nosé-mass should be set such that the induced temperature fluctuation show approximately the same frequencies as the typical 'phonon'-frequencies for the specific system. For liquids something like 'phonon'-frequencies might be obtained from the spectrum of the velocity auto-correlation function. If the ionic frequencies differ by an order of magnitude from the frequencies of the induced temperature fluctuations, Nosé thermostat and ionic movement might decouple leading to a non canonical ensemble. The frequency of the approximate temperature fluctuations induced by the Nosé-thermostat is written to the OUTCAR file.

Related Tags and Sections

IBRION, POTIM, NBLOCK, TEBEG, TEEND

References


Contents