Slow-growth approach: Difference between revisions
No edit summary |
No edit summary |
||
Line 27: | Line 27: | ||
transformation. | transformation. | ||
Detailed description of the simulation protocol that employs Jarzynski's identity | Detailed description of the simulation protocol that employs Jarzynski's identity | ||
can be found in | can be found in reference <ref name="oberhofer2005"/>. | ||
* For a constrained molecular dynamics run with Andersen thermostat, one has to: | * For a constrained molecular dynamics run with Andersen thermostat, one has to: | ||
Line 35: | Line 35: | ||
#When the free-energy gradient is to be computed, set {{TAG|LBLUEOUT}}=.TRUE. | #When the free-energy gradient is to be computed, set {{TAG|LBLUEOUT}}=.TRUE. | ||
<ol start="5"> | <ol start="5"> | ||
<li> | <li>For a slow-growth simulation, one has to perform a calcualtion very similar to {{TAG|Constrained molecular dynamics}} but additionally the transformation velocity-related {{TAG|INCREM}}-tag for each geometric parameter with <tt>STATUS=0</tt> has to be specified.</li> | ||
</ol> | </ol> | ||
Line 47: | Line 46: | ||
<ref name="woo1997">[https://pubs.acs.org/doi/abs/10.1021/jp9717296 T. K. Woo, P. M. Margl, P. E. Blochl, and T. Ziegler, J. Phys. Chem. B 101, 7877 (1997).]</ref> | <ref name="woo1997">[https://pubs.acs.org/doi/abs/10.1021/jp9717296 T. K. Woo, P. M. Margl, P. E. Blochl, and T. Ziegler, J. Phys. Chem. B 101, 7877 (1997).]</ref> | ||
<ref name="jarzynski1997">[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.2690 C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).]</ref> | <ref name="jarzynski1997">[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.2690 C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).]</ref> | ||
<ref name="oberhofer2005">[https://pubs.acs.org/doi/abs/10.1021/jp044556a . Oberhofer, C. Dellago, and P. L. Geissler, J. Phys. Chem. B 109, 6902 (2005).]</ref> | |||
</references> | </references> | ||
---- | ---- |
Revision as of 15:40, 13 March 2019
The free-energy profile along a geometric parameter can be scanned by an approximate slow-growth approach[1]. In this method, the value of is linearly changed from the value characteristic for the initial state (1) to that for the final state (2) with a velocity of transformation . The resulting work needed to perform a transformation can be computed as:
In the limit of infinitesimally small , the work corresponds to the free-energy difference between the the final and initial state. In the general case, is the irreversible work related to the free energy via Jarzynski's identity[2]:
Note that calculation of the free-energy via this equation requires averaging of the term over many realizations of the transformation. Detailed description of the simulation protocol that employs Jarzynski's identity can be found in reference [3].
- For a constrained molecular dynamics run with Andersen thermostat, one has to:
- Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
- Set MDALGO=1, and choose an appropriate setting for ANDERSEN_PROB
- Define geometric constraints in the ICONST-file, and set the STATUS parameter for the constrained coordinates to 0
- When the free-energy gradient is to be computed, set LBLUEOUT=.TRUE.
- For a slow-growth simulation, one has to perform a calcualtion very similar to Constrained molecular dynamics but additionally the transformation velocity-related INCREM-tag for each geometric parameter with STATUS=0 has to be specified.
VASP can handle multiple (even redundant) constraints. Note, however, that a too large number of constraints can cause problems with the stability of the SHAKE algorithm. In problematic cases, it is recommended to use a looser convergence criterion (see SHAKETOL) and to allow a larger number of iterations (see SHAKEMAXITER) in the SHAKE algorithm. Hard constraints may also be used in metadynamics simulations (see MDALGO=11 | 21). Information about the constraints is written onto the REPORT-file: check the lines following the string: Const_coord