Thermodynamic integration with harmonic reference: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 1: Line 1:
The Helmholtz free energy (<math>A</math>) of a fully interacting system (1) can be expressed in terms of that of system harmonic in Cartesian coordinates (0,<math>\mathbf{x}</math>) as follows
The Helmholtz free energy (<math>A</math>) of a fully interacting system (1) can be expressed in terms of that of system harmonic in Cartesian coordinates (0,<math>\mathbf{x}</math>) as follows
:<math>
:<math>
A_{1} = A_{0} + \Delta A_{0\rightarrow 1}
A_{1} = A_{0,<math>\mathbf{x}</math>} + \Delta A_{0,<math>\mathbf{x}</math>\rightarrow 1}
</math>  
</math>  
where <math>\Delta A_{0\rightarrow 1}</math> is anharmonic free energy. The latter term can be determined by means of thermodynamic integration (TI)
where <math>\Delta A_{0,<math>\mathbf{x}</math>\rightarrow 1}</math> is anharmonic free energy. The latter term can be determined by means of thermodynamic integration (TI)
:<math>
:<math>
\Delta A_{0\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_0 \rangle_\lambda
\Delta A_{0,<math>\mathbf{x}</math>\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_{0,<math>\mathbf{x}</math>} \rangle_\lambda
</math>
</math>
with <math>V_i</math> being the potential energy of system <math>i</math>, <math>\lambda</math> is a coupling constant and <math>\langle\cdots\rangle_\lambda</math> is the NVT ensemble average of the system driven by the Hamiltonian
with <math>V_i</math> being the potential energy of system <math>i</math>, <math>\lambda</math> is a coupling constant and <math>\langle\cdots\rangle_\lambda</math> is the NVT ensemble average of the system driven by the Hamiltonian
:<math>
:<math>
\mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_0
\mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_{0,<math>\mathbf{x}</math>}
</math>
</math>



Revision as of 07:57, 1 November 2023

The Helmholtz free energy () of a fully interacting system (1) can be expressed in terms of that of system harmonic in Cartesian coordinates (0,) as follows

Failed to parse (syntax error): {\displaystyle A_{1} = A_{0,<math>\mathbf{x}} } + \Delta A_{0,\rightarrow 1}

</math> where Failed to parse (syntax error): {\displaystyle \Delta A_{0,<math>\mathbf{x}} \rightarrow 1}</math> is anharmonic free energy. The latter term can be determined by means of thermodynamic integration (TI)

Failed to parse (syntax error): {\displaystyle \Delta A_{0,<math>\mathbf{x}} \rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_{0,} \rangle_\lambda

</math> with being the potential energy of system , is a coupling constant and is the NVT ensemble average of the system driven by the Hamiltonian

Failed to parse (syntax error): {\displaystyle \mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_{0,<math>\mathbf{x}} }

</math>

Free energy of harmonic reference system within the quasi-classical theory writes

with the electronic free energy for the configuration corresponding to the potential energy minimum with the atomic position vector , the number of vibrational degrees of freedom , and the angular frequency of vibrational mode . The