Si HSE bandstructure: Difference between revisions

From VASP Wiki
No edit summary
Line 160: Line 160:


=== Standard DFT run ===
=== Standard DFT run ===
*INCAR
Just as before
 
*INCAR (see INCAR.dft)
<pre>
<pre>
## Default     
ISMEAR =  0
ISMEAR =  0
SIGMA  =  0.01
SIGMA  =  0.01
GGA    = PE
NBANDS = 8
 
## HSE
#LHFCALC = .TRUE. ; HFSCREEN = 0.2 ; AEXX = 0.25
#ALGO = D ; TIME = 0.4 ; LDIAG = .TRUE.
 
##VASP2WANNIER
#LWANNIER90=.TRUE.
</pre>
</pre>


*KPOINTS
*KPOINTS (see KPOINST.6)
<pre>
<pre>
Automatically generated mesh
6x6x6
  0
  0
G
G
  4 4 4
  6 6 6
  0 0 0
  0 0 0
</pre>
</pre>


=== HSE + LWANNIER90 run ===
=== Increase the number of states to 24 ===
This step is optional.


*INCAR
*INCAR (see INCAR.diag)
<pre>
<pre>
## Default     
 
ISMEAR =  0
ISMEAR =  0
SIGMA  =  0.01
SIGMA  =  0.01
GGA    = PE


## HSE
ALGO = Exact
LHFCALC = .TRUE. ; HFSCREEN = 0.2 ; AEXX = 0.25
NELM = 1
ALGO = D ; TIME = 0.4 ; LDIAG = .TRUE.


##VASP2WANNIER
NBANDS = 24
LWANNIER90=.TRUE.
</pre>
</pre>


Use the wannier90.win file given below which contains all instructions needed to generate the necessary input files
=== HSE + LWANNIER90 run ===
for the WANNIER90 runs (wannier90.amn, wannier90.mmn, wannier90.eig).
Run the hybrid functional calculation and call <tt>wannier90</tt>.
 
'''Mind''': If the wannier90.win file does not exist VASP will create a default wannier90.win compatible with
the POSCAR and INCAR files, which needs to be suitably modified by including the proper instruction required
to generate the maximally localized wannier functions (refer to the [http://www.wannier.org/doc/user_guide.pdf WANNIER90 manual]).


*wannier90.win
*INCAR (see INCAR.hse_with_wannier90)
<pre>
<pre>
num_wann=8
ISMEAR = 0
num_bands=8
SIGMA  = 0.01


Begin Projections
LHFCALC = .TRUE. ; HFSCREEN = 0.2 ; AEXX = 0.25
Si:sp3
ALGO = D ; TIME = 0.4 ; LDIAG = .TRUE.  
End Projections
NKRED = 2
 
dis_froz_max=9
dis_num_iter=1000
 
guiding_centres=true
 
#restart        =  plot
#bands_plot      = true
#begin kpoint_path
#L 0.50000  0.50000 0.5000 G 0.00000  0.00000 0.0000
#G 0.00000  0.00000 0.0000 X 0.50000  0.00000 0.5000
#X 0.50000  0.00000 0.5000 K 0.37500 -0.37500 0.0000
#K 0.37500 -0.37500 0.0000 G 0.00000  0.00000 0.0000
#end kpoint_path
#bands_num_points 40
#bands_plot_format gnuplot xmgrace
 
begin unit_cell_cart
    2.7150000    2.7150000    0.0000000
    0.0000000    2.7150000    2.7150000
    2.7150000    0.0000000    2.7150000
end unit_cell_cart


begin atoms_cart
EDIFF = 1.E-6
Si      0.0000000    0.0000000    0.0000000
Si      1.3575000    1.3575000    1.3575000
end atoms_cart


mp_grid =     4    4    4
NBANDS = 24


begin kpoints
LWANNIER90_RUN = .TRUE.
    0.0000000    0.0000000    0.0000000
    0.2500000    0.0000000    0.0000000
    0.5000000    0.0000000    0.0000000
    0.2500000    0.2500000    0.0000000
    0.5000000    0.2500000    0.0000000
    -0.2500000    0.2500000    0.0000000
    0.5000000    0.5000000    0.0000000
    -0.2500000    0.5000000    0.2500000
    0.0000000    0.2500000    0.0000000
    0.0000000    0.0000000    0.2500000
    -0.2500000    -0.2500000    -0.2500000
    -0.2500000    0.0000000    0.0000000
    0.0000000    -0.2500000    0.0000000
    0.0000000    0.0000000    -0.2500000
    0.2500000    0.2500000    0.2500000
    0.0000000    0.5000000    0.0000000
    0.0000000    0.0000000    0.5000000
    -0.5000000    -0.5000000    -0.5000000
    0.0000000    0.2500000    0.2500000
    0.2500000    0.0000000    0.2500000
    -0.2500000    -0.2500000    0.0000000
    -0.2500000    0.0000000    -0.2500000
    0.0000000    -0.2500000    -0.2500000
    0.0000000    0.5000000    0.2500000
    0.2500000    0.0000000    0.5000000
    -0.2500000    -0.2500000    0.2500000
    -0.5000000    -0.2500000    -0.5000000
    0.2500000    0.5000000    0.0000000
    0.2500000    -0.2500000    -0.2500000
    -0.5000000    -0.5000000    -0.2500000
    0.0000000    0.2500000    0.5000000
    -0.2500000    0.2500000    -0.2500000
    -0.2500000    -0.5000000    -0.5000000
    0.5000000    0.0000000    0.2500000
    -0.5000000    -0.2500000    0.0000000
    0.0000000    -0.5000000    -0.2500000
    -0.2500000    0.0000000    -0.5000000
    0.2500000    0.2500000    -0.2500000
    0.5000000    0.2500000    0.5000000
    -0.2500000    -0.5000000    0.0000000
    -0.2500000    0.2500000    0.2500000
    0.5000000    0.5000000    0.2500000
    0.0000000    -0.2500000    -0.5000000
    0.2500000    -0.2500000    0.2500000
    0.2500000    0.5000000    0.5000000
    -0.5000000    0.0000000    -0.2500000
    0.0000000    -0.2500000    0.2500000
    0.2500000    0.0000000    -0.2500000
    -0.2500000    -0.2500000    -0.5000000
    0.2500000    0.5000000    0.2500000
    0.2500000    -0.2500000    0.0000000
    -0.5000000    -0.2500000    -0.2500000
    0.2500000    0.2500000    0.5000000
    0.0000000    0.2500000    -0.2500000
    -0.2500000    -0.5000000    -0.2500000
    0.5000000    0.2500000    0.2500000
    -0.2500000    0.0000000    0.2500000
    0.0000000    0.5000000    0.5000000
    0.5000000    0.0000000    0.5000000
    0.2500000    -0.2500000    0.5000000
    0.5000000    0.2500000    -0.2500000
    -0.5000000    -0.2500000    -0.7500000
    0.2500000    -0.5000000    -0.2500000
    -0.2500000    0.2500000    -0.5000000
end kpoints
</pre>
</pre>


=== Compute Wannier functions ===
You will have to provide some instructions for <tt>wannier90</tt> as well:
 
run wannier90:
 
wannier90.x wannier90
 
This run generates the wannier90 standard output (wannier90.wout)
and the file wannier90.chk needed for the wannier interpolation (next step)
=== Obtain bandstructure (Wannier interpolation) and plot using XMGRACE or GNUPLOT===
 
Uncomment the bandstructure plot flags in wannier90.win and rerun (restart) wannier90:
 
wannier90.x wannier90
 
This run generates the following bandstructure files which can be visualized using xmgrace or gnuplot:
 
wannier90_band.agr
 
wannier90_band.dat
 
wannier90_band.gnu
 


*README.txt
*wannier90.win (see wannier90.win_start)
<pre>
<pre>
Bandstructure plot in VASP (Three different ways)
num_wann=18
num_bands=24


1) Standard way: PBE (Fcc Si bandstructure example).
Begin Projections
  1.1  Standard self-consistent (SC) run
Si:s ; p ; d
  1.2  non-SC calculation (ICHARG=11) using preconverged CHGCAR file and KPOINTS_PBE_bands
End Projections
  1.3  Plot using p4v


2) Fake SC procedure: PBE & HSE
#dis_froz_max=9
  2.1 Standard self-consistent (SC) run
dis_num_iter=100
  2.2 Additional SC-run using KPOINTS_HSE_bands
  2.3 Plot using p4v


----
#guiding_centres=true
The file KPOINTS_HSE_bands is constructed by copying the IBZKPT file from run 2.1 to the KPOINTS file:


IBZKPT
bands_plot      =  true
Automatically generated mesh
begin kpoint_path
      8
L 0.50000  0.50000 0.5000 G 0.00000  0.00000 0.0000
Reciprocal lattice
G 0.00000  0.00000 0.0000 X 0.50000  0.00000 0.5000
    0.00000000000000    0.00000000000000    0.00000000000000            1
X 0.50000  0.00000 0.5000 K 0.37500 -0.37500 0.0000
    0.25000000000000    0.00000000000000    0.00000000000000            8
K 0.37500 -0.37500 0.0000 G 0.00000  0.00000 0.0000
    0.50000000000000    0.00000000000000    0.00000000000000            4
end kpoint_path
    0.25000000000000    0.25000000000000    0.00000000000000            6
bands_num_points 40
    0.50000000000000    0.25000000000000    0.00000000000000            24
bands_plot_format gnuplot xmgrace
  -0.25000000000000    0.25000000000000    0.00000000000000            12
</pre>
    0.50000000000000    0.50000000000000    0.00000000000000            3
  -0.25000000000000    0.50000000000000    0.25000000000000            6


Then add the desired additional k-points with zero weight and change the total number of k-points


Explicit k-points list
'''Mind''': If the wannier90.win file does not exist VASP will create a default wannier90.win compatible with
      18 <--- CHANGE TOTAL NUMBER OF K-POINTS !!
the POSCAR and INCAR files, which needs to be suitably modified by including the proper instruction required
Reciprocal lattice
to generate the maximally localized wannier functions (refer to the [http://www.wannier.org/doc/user_guide.pdf WANNIER90 manual]).
    0.00000000000000    0.00000000000000    0.00000000000000            1
    0.25000000000000    0.00000000000000    0.00000000000000            8
    0.50000000000000    0.00000000000000    0.00000000000000            4
    0.25000000000000    0.25000000000000    0.00000000000000            6
    0.50000000000000    0.25000000000000    0.00000000000000            24
  -0.25000000000000    0.25000000000000    0.00000000000000            12
    0.50000000000000    0.50000000000000    0.00000000000000            3
  -0.25000000000000    0.50000000000000    0.25000000000000            6
0.00000000 0.00000000 0.00000000 0.000 <--- ZERO WEIGHT !!
0.00000000 0.05555556 0.05555556 0.000
0.00000000 0.11111111 0.11111111 0.000
0.00000000 0.16666667 0.16666667 0.000
0.00000000 0.22222222 0.22222222 0.000
0.00000000 0.27777778 0.27777778 0.000
0.00000000 0.33333333 0.33333333 0.000
0.00000000 0.38888889 0.38888889 0.000
0.00000000 0.44444444 0.44444444 0.000
0.00000000 0.50000000 0.50000000 0.000
----


3) VASP2WANNIER90: PBE, HSE & GW
=== Plot bandstructure (Wannier interpolation) using XMGRACE or GNUPLOT===
  3.1 Standard SC run using the existing wannier.win file 
  3.2 run wannier90 (wannier90.x wannier90) to generate MLWFs
  3.3 uncomment bandstructure plot flags in wannier90.win and restart wannier90


----
If all went well, <tt>wannier90</tt> will have generated the following bandstructure files which can be visualized using xmgrace or gnuplot:
If the wannier90.win file does not exist VASP will create a default wannier90.win compatible with
the POSCAR and INCAR, which need to be suitably modify by including the proper instruction required
to generate the MLWFs (refer to the wannier90 manual):


default wannier90.win
*wannier90_band.agr
num_wann =    8  ! set to NBANDS by VASP


use_bloch_phases = .T.
*wannier90_band.dat


begin unit_cell_cart
*wannier90_band.gnu
    2.7150000    2.7150000    0.0000000
    0.0000000    2.7150000    2.7150000
    2.7150000    0.0000000    2.7150000
end unit_cell_cart


begin atoms_cart
Si      0.0000000    0.0000000    0.0000000
Si      1.3575000    1.3575000    1.3575000
end atoms_cart
mp_grid =    4    4    4
begin kpoints
    0.0000000    0.0000000    0.0000000
    0.2500000    0.0000000    0.0000000
    0.5000000    0.0000000    0.0000000
    0.2500000    0.2500000    0.0000000
    0.5000000    0.2500000    0.0000000
    -0.2500000    0.2500000    0.0000000
    0.5000000    0.5000000    0.0000000
    -0.2500000    0.5000000    0.2500000
    0.0000000    0.2500000    0.0000000
    0.0000000    0.0000000    0.2500000
    -0.2500000    -0.2500000    -0.2500000
    -0.2500000    0.0000000    0.0000000
    0.0000000    -0.2500000    0.0000000
    0.0000000    0.0000000    -0.2500000
    0.2500000    0.2500000    0.2500000
    0.0000000    0.5000000    0.0000000
    0.0000000    0.0000000    0.5000000
    -0.5000000    -0.5000000    -0.5000000
    0.0000000    0.2500000    0.2500000
    0.2500000    0.0000000    0.2500000
    -0.2500000    -0.2500000    0.0000000
    -0.2500000    0.0000000    -0.2500000
    0.0000000    -0.2500000    -0.2500000
    0.0000000    0.5000000    0.2500000
    0.2500000    0.0000000    0.5000000
    -0.2500000    -0.2500000    0.2500000
    -0.5000000    -0.2500000    -0.5000000
    0.2500000    0.5000000    0.0000000
    0.2500000    -0.2500000    -0.2500000
    -0.5000000    -0.5000000    -0.2500000
    0.0000000    0.2500000    0.5000000
    -0.2500000    0.2500000    -0.2500000
    -0.2500000    -0.5000000    -0.5000000
    0.5000000    0.0000000    0.2500000
    -0.5000000    -0.2500000    0.0000000
    0.0000000    -0.5000000    -0.2500000
    -0.2500000    0.0000000    -0.5000000
    0.2500000    0.2500000    -0.2500000
    0.5000000    0.2500000    0.5000000
    -0.2500000    -0.5000000    0.0000000
    -0.2500000    0.2500000    0.2500000
    0.5000000    0.5000000    0.2500000
    0.0000000    -0.2500000    -0.5000000
    0.2500000    -0.2500000    0.2500000
    0.2500000    0.5000000    0.5000000
    -0.5000000    0.0000000    -0.2500000
    0.0000000    -0.2500000    0.2500000
    0.2500000    0.0000000    -0.2500000
    -0.2500000    -0.2500000    -0.5000000
    0.2500000    0.5000000    0.2500000
    0.2500000    -0.2500000    0.0000000
    -0.5000000    -0.2500000    -0.2500000
    0.2500000    0.2500000    0.5000000
    0.0000000    0.2500000    -0.2500000
    -0.2500000    -0.5000000    -0.2500000
    0.5000000    0.2500000    0.2500000
    -0.2500000    0.0000000    0.2500000
    0.0000000    0.5000000    0.5000000
    0.5000000    0.0000000    0.5000000
    0.2500000    -0.2500000    0.5000000
    0.5000000    0.2500000    -0.2500000
    -0.5000000    -0.2500000    -0.7500000
    0.2500000    -0.5000000    -0.2500000
    -0.2500000    0.2500000    -0.5000000
end kpoints
----
</pre>


Wannier90 Manual: [http://www.wannier.org/doc/user_guide.pdf WANNIER90 manual]
Wannier90 Manual: [http://www.wannier.org/doc/user_guide.pdf WANNIER90 manual]

Revision as of 16:03, 25 August 2016

Description: Bandstructure for Si within DFT+HF

Bandstructure in VASP can be obtained following three different procedures. The standard procedure (procedure 1),

applicable at PBE level, is also described in Fcc Si bandstructure example.

Within Hybrid functional theory it is possible to plot bandstructure using procedure 2 or 3.

Procedure 1: Standard procedure (suitable for DFT calculations)

Only possible within DFT. Described in Fcc Si bandstructure example:

Standard self-consistent (SC) run

  • POSCAR
system Si
5.430
0.5 0.5 0.0
0.0 0.5 0.5
0.5 0.0 0.5
2
cart
0.00 0.00 0.00
0.25 0.25 0.25
  • INCAR (see INCAR.dft)
ISMEAR =  0
SIGMA  =  0.01
NBANDS = 8
  • KPOINTS (see KPOINTS.6)
6x6x6
 0
G
 6 6 6
 0 0 0

Non-SC calculation (ICHARG=11)

Use preconverged CHGCAR file and a suitable KPOINTS file

  • INCAR
ISMEAR =  0
SIGMA  =  0.01
NBANDS = 8

ICHARG=11 #read charge from CHGCAR and keep fixed
LORBIT=11
  • KPOINTS (see KPOINTS_PBE_bands)
k-points for bandstructure L-G-X-U K-G
 10
line
reciprocal
  0.50000  0.50000  0.50000    1
  0.00000  0.00000  0.00000    1

  0.00000  0.00000  0.00000    1
  0.00000  0.50000  0.50000    1

  0.00000  0.50000  0.50000    1
  0.25000  0.62500  0.62500    1

  0.37500  0.7500   0.37500    1
  0.00000  0.00000  0.00000    1

Plot using p4v

P4VASP: p4v

Procedure 2: 0-weight (Fake) SC procedure (works DFT & hybrid functionals)

This procedure can be applied to compute bandstructure at hybrid functionals and DFT level (see the HSE_bandstructure.sh script).

Standard DFT run

Just as before

  • INCAR (see INCAR.dft)
ISMEAR =  0
SIGMA  =  0.01
NBANDS = 8
  • KPOINTS (see KPOINST.6)
6x6x6
 0
G
 6 6 6
 0 0 0

Hybrid calculation using a suitably modified KPOINTS file

  • INCAR (see INCAR.hse)
ISMEAR =  0
SIGMA  =  0.01

LHFCALC = .TRUE. ; HFSCREEN = 0.2 ; AEXX = 0.25
ALGO = D ; TIME = 0.4 ; LDIAG = .TRUE. 

EDIFF = 1.E-6

NBANDS = 8
  • KPOINTS (see KPOINTS_HSE_bands.6 and README.txt)
Automatically generated mesh
      26
Reciprocal lattice
    0.00000000000000    0.00000000000000    0.00000000000000             1
    0.16666666666667    0.00000000000000    0.00000000000000             8
    0.33333333333333    0.00000000000000    0.00000000000000             8
    0.50000000000000    0.00000000000000    0.00000000000000             4
    0.16666666666667    0.16666666666667    0.00000000000000             6
    0.33333333333333    0.16666666666667    0.00000000000000            24
    0.50000000000000    0.16666666666667    0.00000000000000            24
   -0.33333333333333    0.16666666666667    0.00000000000000            24
   -0.16666666666667    0.16666666666667    0.00000000000000            12
    0.33333333333333    0.33333333333333    0.00000000000000             6
    0.50000000000000    0.33333333333333    0.00000000000000            24
   -0.33333333333333    0.33333333333333    0.00000000000000            12
    0.50000000000000    0.50000000000000    0.00000000000000             3
    0.50000000000000    0.33333333333333    0.16666666666667            24
   -0.33333333333333    0.33333333333333    0.16666666666667            24
   -0.33333333333333    0.50000000000000    0.16666666666667            12
0.00000000 0.00000000 0.00000000 0.000
0.00000000 0.05555556 0.05555556 0.000
0.00000000 0.11111111 0.11111111 0.000
0.00000000 0.16666667 0.16666667 0.000
0.00000000 0.22222222 0.22222222 0.000
0.00000000 0.27777778 0.27777778 0.000
0.00000000 0.33333333 0.33333333 0.000
0.00000000 0.38888889 0.38888889 0.000
0.00000000 0.44444444 0.44444444 0.000
0.00000000 0.50000000 0.50000000 0.000

Plot using p4v

P4VASP: p4v

Mind: Zoom in on the right-side part of the bandstructure plot.

Procedure 3: VASP2WANNIER90 (works for DFT, hybrid functionals, and GW)

Wannier function interpolation using the VASP2WANNIER90 interface. Applicable in all cases (here applied for hybrids; for GW see the Bandstructure of Si in GW (VASP2WANNIER90) and bandstructure of SrVO3 in GW examples).

Standard DFT run

Just as before

  • INCAR (see INCAR.dft)
ISMEAR =  0
SIGMA  =  0.01
NBANDS = 8
  • KPOINTS (see KPOINST.6)
6x6x6
 0
G
 6 6 6
 0 0 0

Increase the number of states to 24

This step is optional.

  • INCAR (see INCAR.diag)

ISMEAR =  0
SIGMA  =  0.01

ALGO = Exact
NELM = 1

NBANDS = 24

HSE + LWANNIER90 run

Run the hybrid functional calculation and call wannier90.

  • INCAR (see INCAR.hse_with_wannier90)
ISMEAR =  0
SIGMA  =  0.01

LHFCALC = .TRUE. ; HFSCREEN = 0.2 ; AEXX = 0.25
ALGO = D ; TIME = 0.4 ; LDIAG = .TRUE. 
NKRED = 2

EDIFF = 1.E-6

NBANDS = 24

LWANNIER90_RUN = .TRUE.

You will have to provide some instructions for wannier90 as well:

  • wannier90.win (see wannier90.win_start)
num_wann=18
num_bands=24

Begin Projections
Si:s ; p ; d
End Projections

#dis_froz_max=9
dis_num_iter=100

#guiding_centres=true

bands_plot      =  true
begin kpoint_path
L 0.50000  0.50000 0.5000 G 0.00000  0.00000 0.0000
G 0.00000  0.00000 0.0000 X 0.50000  0.00000 0.5000
X 0.50000  0.00000 0.5000 K 0.37500 -0.37500 0.0000
K 0.37500 -0.37500 0.0000 G 0.00000  0.00000 0.0000
end kpoint_path
bands_num_points 40
bands_plot_format gnuplot xmgrace


Mind: If the wannier90.win file does not exist VASP will create a default wannier90.win compatible with the POSCAR and INCAR files, which needs to be suitably modified by including the proper instruction required to generate the maximally localized wannier functions (refer to the WANNIER90 manual).

Plot bandstructure (Wannier interpolation) using XMGRACE or GNUPLOT

If all went well, wannier90 will have generated the following bandstructure files which can be visualized using xmgrace or gnuplot:

  • wannier90_band.agr
  • wannier90_band.dat
  • wannier90_band.gnu


Wannier90 Manual: WANNIER90 manual

LWANNIER90 in the VASP Manual: LWANNIER90.

Download

Si_HSE_band.tgz


To the list of examples or to the main page