|
|
Line 97: |
Line 97: |
|
| |
|
| where <math>N_q</math> is the number of q-points and <math>N_G</math> number of G-vectors. | | where <math>N_q</math> is the number of q-points and <math>N_G</math> number of G-vectors. |
| | |
| | == Solution of the BSE == |
| | === Diagonalization === |
| | |
| | |
| | === Time-evolution === |
|
| |
|
| == How to == | | == How to == |
The formalism of the Bethe-Salpeter equation (BSE) allows for calculating the polarizability with the electron-hole interaction and constitutes the state of the art for calculating absorption spectra in solids.
Theory
The Bethe-Salpeter equation
In the BSE, the excitation energies correspond to the eigenvalues of the following linear problem
The matrices and describe the resonant and anti-resonant transitions between the occupied and unoccupied states
The energies and orbitals of these states are usually obtained in a calculation, but DFT and Hybrid functional calculations can be used as well.
The electron-electron interaction and electron-hole interaction are described via the bare Coulomb and the screened potential .
The coupling between resonant and anti-resonant terms is described via terms and
Due to the presence of this coupling, the Bethe-Salpeter Hamiltonian is non-Hermitian.
The Tamm-Dancoff approximation
A common approximation to the BSE is the Tamm-Dancoff approximation (TDA), which neglects the coupling between resonant and anti-resonant terms, i.e., and .
Hence, the TDA reduces the BSE to a Hermitian problem
In reciprocal space, the matrix is written as
where is the cell volume, is the bare Coulomb potential without the long-range part
and the screened Coulomb potential
Here, the dielectric function describes the screening in within the random-phase approximation (RPA)
Although the dielectric function is frequency-dependent, the static approximation is considered a standard for practical BSE calculations.
The macroscopic dielectric which account for the excitonic effects is found via eigenvalues and eigenvectors of the BSE
Scaling
The scaling of the BSE equation strongly limits its application for large systems. The main limiting factor is the diagonalization of the BSE Hamiltonian. The rank of the Hamiltonian is
- ,
where is the number of k-points in the Brillouin zone and and are the number of conduction and valence bands, respectively. The diagonalization of the matrix scales cubically with the matrix rank, i.e., .
Despite the fact that this matrix diagonalization is usually the bottleneck for bigger systems, the construction of the BSE Hamiltonian also scales unfavorably and can play a dominant role in big systems, i.e.,
- ,
where is the number of q-points and number of G-vectors.
Solution of the BSE
Diagonalization
Time-evolution
How to
References