ML IALGO LINREG: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{TAGDEF|ML_IALGO_LINREG|[integer]|1}} | {{TAGDEF|ML_IALGO_LINREG|[integer]|1}} | ||
Description: This tag determines how to solve the linear equations in the ridge regression for machine learning. | Description: This tag determines how to solve the system of linear equations in the ridge regression method for machine learning. | ||
---- | ---- | ||
The following options are available: | The following options are available: | ||
*{{TAG|ML_IALGO_LINREG}}=1: Bayesian linear regression (see [[Machine learning force field: Theory#Bayesian error estimation|here]]. | *{{TAG|ML_IALGO_LINREG}}=1: Bayesian linear regression (see [[Machine learning force field: Theory#Bayesian error estimation|here]]). Usable with {{TAG|NSW}}<math>\ge</math>1. | ||
*{{TAG|ML_IALGO_LINREG}}=2: | *{{TAG|ML_IALGO_LINREG}}=2: QR factorization. Usable with {{TAG|NSW}}=0,1. | ||
*{{TAG|ML_IALGO_LINREG}}=3: | *{{TAG|ML_IALGO_LINREG}}=3: Singular value decomposition. Usable with {{TAG|NSW}}=0,1. | ||
*{{TAG|ML_IALGO_LINREG}}=4: | *{{TAG|ML_IALGO_LINREG}}=4: Singular value decomposition with Tikhonov regularization. Usable with {{TAG|NSW}}=0,1. | ||
== Related Tags and Sections == | == Related Tags and Sections == |
Revision as of 18:16, 12 October 2021
ML_IALGO_LINREG = [integer]
Default: ML_IALGO_LINREG = 1
Description: This tag determines how to solve the system of linear equations in the ridge regression method for machine learning.
The following options are available:
- ML_IALGO_LINREG=1: Bayesian linear regression (see here). Usable with NSW1.
- ML_IALGO_LINREG=2: QR factorization. Usable with NSW=0,1.
- ML_IALGO_LINREG=3: Singular value decomposition. Usable with NSW=0,1.
- ML_IALGO_LINREG=4: Singular value decomposition with Tikhonov regularization. Usable with NSW=0,1.
Related Tags and Sections
ML_LMLFF, ML_W1, ML_WTOTEN, ML_WTIFOR, ML_WTSIF, ML_ISTART