Constrained MD using a microcanonical ensemble: Difference between revisions
Vaspmaster (talk | contribs) No edit summary |
|||
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
== | <b>Description</b>: | ||
{{ | Compare adsoption of H2O on TiO2[110] using a simple model structure: the model surface consists of 2 layers TiO2, (1x1) | ||
* The bottom layer of the slab will be kept frozen | |||
* 2 setups will be tested: | |||
** Standard relaxation, minimizing the Hellmann-Feyman forces | |||
** Constrained MD, fixing the bond lengths and angle of H2O, the system is coupled to an ANDERSEN thermostat: | |||
***Microcanonical NVE ensemble (no collisions with the thermostat) | |||
***Canonical ensembe at T= 10K, to be close to the standard relaxation (0K) | |||
To keep the computing time reasonable, the number of steps in the MD is limited to 100 (100 fs) which implies that the MD is NOT CONVERGED. | |||
*{{TAG|INCAR}} for standard relaxation | |||
{{TAGBL|SYSTEM}} = H2O_TiO2 | |||
{{TAGBL|ENMAX}} = 400 | |||
{{TAGBL|ISMEAR}} = 2 | |||
{{TAGBL|SIGMA}} = 0.05 | |||
{{TAGBL|EDIFF}} = 1e-6 | |||
{{TAGBL|EDIFFG}} = -0.05 | |||
{{TAGBL|IBRION}} = 2 | |||
{{TAGBL|POTIM}} = 0.5 | |||
{{TAGBL|NSW}} = 200 | |||
*{{TAG|INCAR}} for constrained MD using a microcanonical ensemble | |||
{{TAGBL|SYSTEM}} = H2O_TiO2 | |||
{{TAGBL|ENMAX}} = 400 | |||
{{TAGBL|ISMEAR}} = 2 | |||
{{TAGBL|SIGMA}} = 0.05 | |||
{{TAGBL|ISMEAR}} = 0 | |||
{{TAGBL|EDIFF}} = 1e-6 | |||
{{TAGBL|EDIFFG}} = -0.05 | |||
{{TAGBL|IBRION}} = 0 | |||
{{TAGBL|POTIM}} = 1. | |||
{{TAGBL|MDALGO}} = 1 # Andersen Thermostat | |||
{{TAGBL|TEBEG}} = 10; {{TAGBL|TEEND}} = 10 | |||
{{TAGBL|NSW}} = 100 | |||
*{{TAG|ICONST}} for constrained MD using a microcanonical ensemble | |||
R 7 8 0 | |||
R 7 9 0 | |||
A 8 7 9 0 | |||
*{{TAG|INCAR}} for constrained MD using a canonical ensemble | |||
{{TAGBL|SYSTEM}} = H2O_TiO2 | |||
{{TAGBL|ENMAX}} = 400 | |||
{{TAGBL|ISMEAR}} = 2 | |||
{{TAGBL|SIGMA}} = 0.05 | |||
{{TAGBL|ISMEAR}} = 0 | |||
{{TAGBL|EDIFF}} = 1e-6 | |||
{{TAGBL|EDIFFG}} = -0.05 | |||
{{TAGBL|IBRION}} = 0 | |||
{{TAGBL|POTIM}} = 1. | |||
{{TAGBL|MDALGO}} = 1 # Andersen Thermostat | |||
{{TAGBL|ANDERSEN_PROB}} = 0.9 | |||
{{TAGBL|TEBEG}} = 10; {{TAGBL|TEEND}} = 10 | |||
{{TAGBL|NSW}} = 100 | |||
*{{TAG|ICONST}} for constrained MD using a canonical ensemble | |||
R 7 8 0 | |||
R 7 9 0 | |||
A 8 7 9 0 | |||
*{{TAG|POSCAR}} | |||
TiO2+H2O | |||
1.00000000000000 | |||
4.61949 0.00000 0.00000 | |||
0.00000 4.61949 0.00000 | |||
0.00000 0.00000 14.7788 | |||
Ti O H | |||
2 5 2 | |||
Selective | |||
Direct | |||
0.00000 0.00000 0.00000 F F F | |||
0.50000 0.50000 0.10000 T T T | |||
0.30374 0.30374 0.00000 F F F | |||
0.69625 0.69625 0.00000 F F F | |||
0.19625 0.80374 0.10000 T T T | |||
0.80374 0.19625 0.10000 T T T | |||
0.50000 0.50000 0.31500 T T T | |||
0.37720 0.62280 0.35881 T T T | |||
0.62280 0.37720 0.35881 T T T | |||
*{{TAG|KPOINTS}} | |||
Automatically generated mesh | |||
0 | |||
Gamma | |||
5 5 1 | |||
*run.sh | |||
# | |||
# To run VASP this script calls $vasp_std | |||
# (or posibly $vasp_gam and/or $vasp_ncl). | |||
# These variables can be defined by sourcing vaspcmd | |||
. vaspcmd 2> /dev/null | |||
# | |||
# When vaspcmd is not available and $vasp_std, | |||
# $vasp_gam, and/or $vasp_ncl are not set as environment | |||
# variables, you can specify them here | |||
[ -z "`echo $vasp_std`" ] && vasp_std="mpirun -np 8 /path-to-your-vasp/vasp_std" | |||
[ -z "`echo $vasp_gam`" ] && vasp_gam="mpirun -np 8 /path-to-your-vasp/vasp_gam" | |||
[ -z "`echo $vasp_ncl`" ] && vasp_ncl="mpirun -np 8 /path-to-your-vasp/vasp_ncl" | |||
# | |||
# The real work starts here | |||
# | |||
rm results.dat | |||
drct=$(pwd) | |||
for i in std_relaxation constrMD_microcanonical constr_MD_canonical | |||
do | |||
cd $drct/$i | |||
ln -s ../POTCAR . | |||
ln -s ../POSCAR . | |||
ln -s ../KPOINTS . | |||
$vasp_std | |||
/bin/rm CHG* WAVECAR | |||
done | |||
Tor run the calculations use (and modify if necessary) the run.sh script | |||
== Download == | == Download == | ||
Line 7: | Line 130: | ||
[[VASP_example_calculations|To the list of examples]] or to the [[The_VASP_Manual|main page]] | [[VASP_example_calculations|To the list of examples]] or to the [[The_VASP_Manual|main page]] | ||
[[Category:Examples]] | <!-- [[Category:Examples]] --> |
Latest revision as of 18:10, 23 June 2019
Description: Compare adsoption of H2O on TiO2[110] using a simple model structure: the model surface consists of 2 layers TiO2, (1x1)
- The bottom layer of the slab will be kept frozen
- 2 setups will be tested:
- Standard relaxation, minimizing the Hellmann-Feyman forces
- Constrained MD, fixing the bond lengths and angle of H2O, the system is coupled to an ANDERSEN thermostat:
- Microcanonical NVE ensemble (no collisions with the thermostat)
- Canonical ensembe at T= 10K, to be close to the standard relaxation (0K)
To keep the computing time reasonable, the number of steps in the MD is limited to 100 (100 fs) which implies that the MD is NOT CONVERGED.
- INCAR for standard relaxation
SYSTEM = H2O_TiO2 ENMAX = 400 ISMEAR = 2 SIGMA = 0.05 EDIFF = 1e-6 EDIFFG = -0.05 IBRION = 2 POTIM = 0.5 NSW = 200
- INCAR for constrained MD using a microcanonical ensemble
SYSTEM = H2O_TiO2 ENMAX = 400 ISMEAR = 2 SIGMA = 0.05 ISMEAR = 0 EDIFF = 1e-6 EDIFFG = -0.05 IBRION = 0 POTIM = 1. MDALGO = 1 # Andersen Thermostat TEBEG = 10; TEEND = 10 NSW = 100
- ICONST for constrained MD using a microcanonical ensemble
R 7 8 0 R 7 9 0 A 8 7 9 0
- INCAR for constrained MD using a canonical ensemble
SYSTEM = H2O_TiO2 ENMAX = 400 ISMEAR = 2 SIGMA = 0.05 ISMEAR = 0 EDIFF = 1e-6 EDIFFG = -0.05 IBRION = 0 POTIM = 1. MDALGO = 1 # Andersen Thermostat ANDERSEN_PROB = 0.9 TEBEG = 10; TEEND = 10 NSW = 100
- ICONST for constrained MD using a canonical ensemble
R 7 8 0 R 7 9 0 A 8 7 9 0
TiO2+H2O 1.00000000000000 4.61949 0.00000 0.00000 0.00000 4.61949 0.00000 0.00000 0.00000 14.7788 Ti O H 2 5 2 Selective Direct 0.00000 0.00000 0.00000 F F F 0.50000 0.50000 0.10000 T T T 0.30374 0.30374 0.00000 F F F 0.69625 0.69625 0.00000 F F F 0.19625 0.80374 0.10000 T T T 0.80374 0.19625 0.10000 T T T 0.50000 0.50000 0.31500 T T T 0.37720 0.62280 0.35881 T T T 0.62280 0.37720 0.35881 T T T
Automatically generated mesh 0 Gamma 5 5 1
- run.sh
# # To run VASP this script calls $vasp_std # (or posibly $vasp_gam and/or $vasp_ncl). # These variables can be defined by sourcing vaspcmd . vaspcmd 2> /dev/null # # When vaspcmd is not available and $vasp_std, # $vasp_gam, and/or $vasp_ncl are not set as environment # variables, you can specify them here [ -z "`echo $vasp_std`" ] && vasp_std="mpirun -np 8 /path-to-your-vasp/vasp_std" [ -z "`echo $vasp_gam`" ] && vasp_gam="mpirun -np 8 /path-to-your-vasp/vasp_gam" [ -z "`echo $vasp_ncl`" ] && vasp_ncl="mpirun -np 8 /path-to-your-vasp/vasp_ncl" # # The real work starts here # rm results.dat drct=$(pwd) for i in std_relaxation constrMD_microcanonical constr_MD_canonical do cd $drct/$i ln -s ../POTCAR . ln -s ../POSCAR . ln -s ../KPOINTS . $vasp_std /bin/rm CHG* WAVECAR done
Tor run the calculations use (and modify if necessary) the run.sh script
Download
h2o_on_tio2.tgz, sub-folder constrMD_microcanonical
To the list of examples or to the main page