ELPH SELFEN MU: Difference between revisions

From VASP Wiki
(Remove elph release banner)
(Add related info and categories)
 
Line 2: Line 2:
{{TAGDEF|ELPH_SELFEN_MU|[real array]|0.0}}
{{TAGDEF|ELPH_SELFEN_MU|[real array]|0.0}}


Description: list of chemical potentials at which to compute the electron-phonon self-energy and transport coefficients.
Description: List of chemical potentials at which to compute the electron-phonon self-energy and transport coefficients.


----
----
Line 43: Line 43:


Alternatively, one can specify the carrier density in units of <math>{m^{-3}}</math> by using the {{TAG|ELPH_SELFEN_CARRIER_DEN}} tag.
Alternatively, one can specify the carrier density in units of <math>{m^{-3}}</math> by using the {{TAG|ELPH_SELFEN_CARRIER_DEN}} tag.
==Related tags and articles==
* [[Transport coefficients including electron-phonon scattering|Transport calculations]]
* {{TAG|ELPH_RUN}}
* {{TAG|ELPH_SELFEN_CARRIER_DEN}}
* {{TAG|ELPH_SELFEN_CARRIER_PER_CELL}}
* {{TAG|ELPH_SELFEN_TEMPS}}
* {{TAG|NELECT}}
[[Category:INCAR tag]][[Category:Electron-phonon_interactions]]

Latest revision as of 15:16, 19 December 2024

ELPH_SELFEN_MU = [real array]
Default: ELPH_SELFEN_MU = 0.0 

Description: List of chemical potentials at which to compute the electron-phonon self-energy and transport coefficients.


Each chemical potential specified in the list will be added to the Fermi energy determined for the k point grid KPOINTS_ELPH. This Fermi energy might be different from the one determined in the self-consistent calculation if the k point meshes or ELPH_ISMEAR is different from ISMEAR. The Fermi energy from the self-consistent and non-self-consistent calculations can be read from the OUTCAR file. For example

$ grep "Fermi energy" OUTCAR
 Fermi energy:         3.5134142202
 Fermi energy:         3.5314189274 eV (dense k-point grid)

In this example, ELPH_SELFEN_MU = 0.1 means that the chemical potential will be set to 3.5314189274+0.1 eV. This can be verified Chemical potential calculation section of the OUTCAR file.

                  Number of electrons per cell
                  ----------------------------
T=      0.00000000    18.00000452
T=    100.00000000    18.00000536
T=    200.00000000    18.00000792
T=    300.00000000    18.00001223
T=    400.00000000    18.00001792
T=    500.00000000    18.00002315

                  ----------------------------
                      Chemical potential
                  ----------------------------
T=      0.00000000     3.63141893
T=    100.00000000     3.63141893
T=    200.00000000     3.63141893
T=    300.00000000     3.63141893
T=    400.00000000     3.63141893
T=    500.00000000     3.63141893
                  ----------------------------

For each of these chemical potentials and temperatures, the number of electrons per cell is computed and reported. These, in turn, can be converted to a carrier density by dividing be the volume of the unit cell. If more than one value is present in ELPH_SELFEN_MU, more columns are added to the list of chemical potentials above and more instances of the electron self-energy due to electron-phonon coupling accumulators are created. The number of rows is set by the list of temperatures in ELPH_SELFEN_TEMPS.

Alternatively, one can specify the carrier density in units of by using the ELPH_SELFEN_CARRIER_DEN tag.

Related tags and articles