|
|
(16 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| Use '''interface pinning''' to determine the melting point from a [[:Category: Molecular dynamics|molecular-dynamics]] simulation of the interface of a liquid and a solid phase.
| |
| <!-- == Theory == -->
| |
| Because the typical behavior of such a simulation is to freeze or melt, the interface is ''pinned'' with a bias potential.
| |
| This potential applies an energy penalty for deviations from the desired two-phase system.
| |
| Prefer simulating above the melting point because the bias potential prevents melting better than freezing.
| |
|
| |
|
| The Steinhardt-Nelson order parameter <math>Q_6</math> discriminates between the solid and the liquid phase.
| |
| With the bias potential
| |
|
| |
| :<math>U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - Q_{6,\text{pinned}}\right)^2 </math>
| |
|
| |
| penalizes differences between the order parameter for the current configuration <math>Q_6({\mathbf{R}})</math> and the one for the desired interface <math>Q_{6,\text{pinned}}</math>.
| |
| <math>\kappa</math> is an adjustable parameter determining the strength of the pinning.
| |
|
| |
| Under the action of the bias potential, the system equilibrates to the desired two-phase configuration.
| |
| An important observable is the difference between the average order parameter <math>\langle Q_6 \rangle</math> in equilibrium and the desired order parameter <math>Q_{6,\text{pinned}}</math>.
| |
| This difference relates to the the chemical potentials of the solid <math>\mu_\text{solid}</math> and the liquid <math>\mu_\text{liquid}</math> phase
| |
|
| |
| :<math>
| |
| N(\mu_\text{solid} - \mu_\text{liquid}) =
| |
| \kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - Q_{6,\text{pinned}})
| |
| </math>
| |
|
| |
| where <math>N</math> is the number of atoms in the simulation.
| |
|
| |
| Computing the forces requires a differentiable <math>Q_6(\mathbf{R})</math>.
| |
| <!-- PLEASE REPHRASE - I did not understand this part and how it relates to Q_6(R) -->
| |
| We use a smooth fading function <math>w(r)</math> to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6</math> order parameter
| |
|
| |
| :<math> w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\
| |
| \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3} &\textrm{for} \,\, n<r<f \\
| |
| 0 &\textrm{for} \,\,f\leq r \end{array}\right. </math>
| |
|
| |
| <!-- is w(r) equivalent to (1 - t)^2(1 + 2t) with t = (r - n) / (f - n)? -->
| |
|
| |
| Here <math>n</math> and <math>f</math> are the near- and far-fading distances given in the {{TAG|INCAR}} file respectively.
| |
| <!-- END REPHRASE -->
| |
| The radial distribution function <math>g(r)</math> of the crystal phase yields a good choice for the fading range.
| |
| To prevent spurious stress, <math>g(r)</math> should be small where the derivative of <math>w(r)</math> is large.
| |
| Set the near fading distance <math>n</math> to the distance where <math>g(r)</math> goes below 1 after the first peak.
| |
| Set the far fading distance <math>f</math> to the distance where <math>g(r)</math> goes above 1 again before the second peak.
| |
|
| |
| == How to ==
| |
|
| |
| The '''interface pinning''' method uses the <math>Np_zT</math> ensemble where the barostat only acts in the direction of the lattice that is perpendicular to the solid-liquid interface. This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions.
| |
|
| |
| The following variables need to be set for the '''interface pinning''' method:
| |
| *{{TAG|OFIELD_Q6_NEAR}}: This tag defines the near-fading distance <math>n</math>.
| |
| *{{TAG|OFIELD_Q6_FAR}}: This tag defines the far-fading distance <math>f</math>.
| |
| *{{TAG|OFIELD_KAPPA}}: This tag defines the coupling strength <math>\kappa</math> of the bias potential.
| |
| *{{TAG|OFIELD_A}}: This tag defines the desired value of the order parameter <math>a</math>.
| |
|
| |
| The following is a sample {{TAG|INCAR}} file for interface pinning of sodium{{cite|pedersen:prb:13}}:
| |
| {{TAGBL|TEBEG}} = 400 # temperature in K
| |
| {{TAGBL|POTIM}} = 4 # timestep in fs
| |
| {{TAGBL|IBRION}} = 0 # do MD
| |
| {{TAGBL|ISIF}} = 3 # use Parrinello-Rahman barostat for the lattice
| |
| {{TAGBL|MDALGO}} = 3 # use Langevin thermostat
| |
| {{TAGBL|LANGEVIN_GAMMA}} = 1.0 # friction coef. for atomic DoFs for each species
| |
| {{TAGBL|LANGEVIN_GAMMA_L}} = 3.0 # friction coef. for the lattice DoFs
| |
| {{TAGBL|PMASS}} = 100 # mass for lattice DoFs
| |
| {{TAGBL|LATTICE_CONSTRAINTS}} = F F T # fix x&y, release z lattice dynamics
| |
| {{TAGBL|OFIELD_Q6_NEAR}} = 3.22 # fading distances for computing a continuous Q6
| |
| {{TAGBL|OFIELD_Q6_FAR}} = 4.384 # in Angstrom
| |
| {{TAGBL|OFIELD_KAPPA}} = 500 # strength of bias potential in eV/(unit of Q)^2
| |
| {{TAGBL|OFIELD_A}} = 0.15 # desired value of the Q6 order parameter
| |
|
| |
| == References ==
| |
| <references/>
| |
|
| |
| <noinclude>
| |
|
| |
| ----
| |
| [[The_VASP_Manual|Contents]]
| |
|
| |
| [[Category:VASP|Interface Pinning]][[Category:Molecular Dynamics]]
| |