ML SION2: Difference between revisions
No edit summary |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{TAGDEF|ML_SION2|[real]| | {{DISPLAYTITLE:ML_SION2}} | ||
{{TAGDEF|ML_SION2|[real]|{{TAG|ML_SION1}}}} | |||
Description: This tag specifies the width <math>\sigma_\text{atom}</math> of the Gaussian functions used for broadening the atomic distributions of the angular descriptor <math>\rho^{(3)}_i(r)</math> within the machine learning force field method | Description: This tag specifies the width <math>\sigma_\text{atom}</math> of the Gaussian functions used for broadening the atomic distributions of the angular descriptor <math>\rho^{(3)}_i(r)</math> within the machine learning force field method. | ||
---- | ---- | ||
The angular descriptor is constructed from | |||
<math> | |||
\rho_{i}^{(3)}\left(r,s,\theta\right) = \iint d\hat{\mathbf{r}} d\hat{\mathbf{s}} \delta\left(\hat{\mathbf{r}}\cdot\hat{\mathbf{s}} - \mathrm{cos}\theta\right) \sum\limits_{j=1}^{N_{a}} \sum\limits_{k \ne j}^{N_{a}} \rho_{ik} \left(r\hat{\mathbf{r}}\right) \rho_{ij} \left(s\hat{\mathbf{s}}\right), \quad \text{where} \quad | |||
\rho_{ij}\left(\mathbf{r}\right) = f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) | |||
</math> | |||
and <math>g\left(\mathbf{r}\right)</math> is the following approximation of the delta function: | |||
<math> | |||
g\left(\mathbf{r}\right)=\frac{1}{\sqrt{2\sigma_{\mathrm{atom}}\pi}}\mathrm{exp}\left(-\frac{|\mathbf{r}|^{2}}{2\sigma_{\mathrm{atom}}^{2}}\right). | |||
</math> | |||
The tag {{TAG|ML_SION2}} sets the width <math>\sigma_\text{atom}</math> of the above Gaussian function (see [[Machine learning force field: Theory#Descriptors|this section]] for more details). | |||
{{BOX|tip|Our test calculations indicate that {{TAG|ML_SION1}} {{=}} {{TAG|ML_SION2}} results in an optimal training performance. Furthermore, a value of 0.5 was found to be a good default value for both. However, the best choice is system-dependent, careful testing may improve machine learning results.}} | |||
The unit of {{TAG|ML_SION2}} is <math>\AA</math>. | The unit of {{TAG|ML_SION2}} is <math>\AA</math>. | ||
== Related | == Related tags and articles == | ||
{{TAG|ML_LMLFF}}, {{TAG|ML_SION1}}, {{TAG|ML_RCUT1}}, {{TAG|ML_RCUT2}}, {{TAG|ML_MRB1}}, {{TAG|ML_MRB2}} | {{TAG|ML_LMLFF}}, {{TAG|ML_SION1}}, {{TAG|ML_RCUT1}}, {{TAG|ML_RCUT2}}, {{TAG|ML_MRB1}}, {{TAG|ML_MRB2}} | ||
Line 12: | Line 27: | ||
---- | ---- | ||
[[Category:INCAR]][[Category:Machine | [[Category:INCAR tag]][[Category:Machine-learned force fields]] |
Latest revision as of 13:31, 8 April 2022
ML_SION2 = [real]
Default: ML_SION2 = ML_SION1
Description: This tag specifies the width of the Gaussian functions used for broadening the atomic distributions of the angular descriptor within the machine learning force field method.
The angular descriptor is constructed from
and is the following approximation of the delta function:
The tag ML_SION2 sets the width of the above Gaussian function (see this section for more details).
Tip: Our test calculations indicate that ML_SION1 = ML_SION2 results in an optimal training performance. Furthermore, a value of 0.5 was found to be a good default value for both. However, the best choice is system-dependent, careful testing may improve machine learning results. |
The unit of ML_SION2 is .
Related tags and articles
ML_LMLFF, ML_SION1, ML_RCUT1, ML_RCUT2, ML_MRB1, ML_MRB2