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Experiment: Static	and	frequency	dependent	dielectric	functions:
measurement	of	absorption,	reflectance	and	energy	loss	spectra.
(Optical	properties	of	semiconductors	and	metals.)

• The	long-wavelength	limit	of	the	frequency	dependent	microscopic
polarizability	and	dielectric	matrices	determine	the	optical	properties	in
the	regime	accessible	to	optical	and	electronic	probes.

Theory: The	frequency	dependent	polarizability	matrix	is	needed	in	many
post-DFT	schemes,	e.g.:

• GW
)	frequency	dependent	microscopic	dielectric	response	needed	to	compute	W.
)	frequency	dependent	macroscopic	dielectric	tensor	required	for	the
analytical	integration	of	the	Coulomb	singularity	in	the	self-energy.

• Exact-exchange	optimized-effective-potential	method	(EXX-OEP).
• Bethe-Salpeter-Equation	(BSE)

)	dielectric	screening	of	the	interaction	potential	needed	to	properly	include
excitonic effects.



Frequency	dependent

• Frequency	dependent	microscopic	dielectric	matrix
)	In	the	RPA,	and	including	changes	in	the	DFT	xc-potential.

• Frequency	dependent	macroscopic	dielectric	tensor
)	Imaginary	and	real	part	of	the	dielectric	function.
)	In- or	excluding	local	field	effects.
)	In	the	RPA,	and	including	changes	in	the	DFT	xc-potential:

Static

• Static	dielectric	tensor,	Born	effective	charges,	and	Piezo-electric	tensor,
in- or	excluding	local	field	effects.
)	From	density-functional-perturbation-theory	(DFPT).
Local	field	effects	in	RPA	and	DFT	xc-potential.
)	From	the	self-consistent	response	to	a	finite	electric	field	(PEAD).
Local	field	effects	from	changes	in	a	HF/DFT	hybrid	xc-potential,	as	well.



Macroscopic	continuum	considerations
• The	macroscopic	dielectric	tensor	couples	the	electric	field	in	a	material	to

an	applied	external	electric	field:	

E = ✏�1E
ext

where	𝜖 is	a	3⨉3	tensor	

• For	a	longitudinal	field,	i.e.,	a	field	caused	by	stationary	external	charges,
this	can	be	reformulated	as	(in	momentum	space,	in	the	long-wavelength	limit):	

v
tot

= ✏�1v
ext

v
tot

= v
ext

+ v
ind

with

• The	induced	potential	is	generated	by	the	induced	change	in	the	charge
density	𝜌#$%.	In	the	linear	response	regime	(weak	external	fields):

⇢
ind

= �v
ext

⇢
ind

= Pv
tot

where	𝜒 is	the	reducible polarizability

where	P is	the	irreducible polarizability

• It	may	be	straightforwardly	shown	that:

✏�1 = 1 + ⌫� ✏ = 1� ⌫P � = P + P⌫� (a	Dyson	eq.)

where	𝜈 is	the	Coulomb	kernel.	In	momentum	space:	 ⌫ = 4⇡e2/q2



Macroscopic	and	microscopic	quantities
The	macroscopic	dielectric	function	can	be	formally	written	as

E(r,!) =

Z
dr0✏�1

mac

(r� r0,!)E
ext

(r0,!)

or	in	momentum	space
E(q,!) = ✏�1

mac

(q,!)E
ext

(q,!)

The	microscopic	dielectric	function	enters	as

e(r,!) =

Z
dr0✏�1(r, r0,!)E

ext

(r0,!)

and	in	momentum	space

e(q+G,!) =
X

G0

✏�1

G,G0(q,!)E
ext

(q+G0,!)

The	microscopic	dielectric	function	is	accessible	through	ab-initio	calculations.
Macroscopic	and	microscopic	quantities	are	linked	through:

E(R,!) =
1

⌦

Z

⌦(R)
e(r,!)dr



Macroscopic	and	microscopic	quantities
Assuming	the	external	field	varies	on	a	length	scale	much	larger	that	the	atomic
distances,	one	may	show	that

E(q,!) = ✏�1

0,0(q,!)Eext

(q,!)

and

✏�1
mac(q,!) = ✏�1

0,0(q,!)

✏mac(q,!) =
�
✏�1
0,0(q,!)

��1

For	materials	that	are	homogeneous	on	the	microscopic	scale,	the	off-diagonal
elements	of	𝜖𝐆,𝐆*

+, (𝐪, 𝜔),	(i.e.,	for	𝐆 ≠ 𝐆′)	are	zero,	and

✏mac(q,!) = ✏0,0(q,!)

This	called	the	“neglect	of	local	field	effects”



The	longitudinal	microscopic	dielectric	function

The	microscopic	(symmetric)	dielectric	function	that	links	the	longitudinal
component	of	an	external	field	(i.e.,	the	part	polarized	along	the	propagation
wave	vector	q)	to	the	longitudinal	component	of	the	total	electric	field,	is	given
by

✏�1

G,G0(q,!) := �G,G0 +
4⇡e2

|q+G||q+G0|
@⇢
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✏G,G0(q,!) := �G,G0 � 4⇡e2

|q+G||q+G0|
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ind
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@v
tot
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and	with �G,G0(q,!) :=
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(q+G,!)

@v
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(q+G0,!)
PG,G0(q,!) :=

@⇢
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(q+G,!)

@v
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⌫sG,G0(q) :=
4⇡e2

|q+G||q+G0|and

one	obtains	the	Dyson	equation	linking	P and	𝜒

�G,G0(q,!) = PG,G0(q,!) +
X

G1,G2

PG,G1(q,!)⌫
s
G1,G2

(q)�G2,G0(q,!)



Approximations

Problem: We	know	neither	P and	𝜒

Problem: The	quantity	we	can	easily	access	in	Kohn-Sham	DFT	is	the:
“irreducible	polarizability	in	the	independent	particle	picture”	𝜒3 (or	𝜒45)

�0
G,G0(q,!) :=

@⇢ind(q+G,!)

@ve↵(q+G0,!)

Adler	and	Wiser	derived	expressions	for	𝜒3 which,	in	terms	of	Bloch	functions,
can	be	written	as	(in	reciprocal	space):

�0
G,G0(q,!) =

1

⌦

X

nn0k

2wk(fn0k+q � fn0k)

⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G0)r0 | n0k+qi
✏n0k+q � ✏nk � ! � i⌘



Approximations	(cont.)

For	the	Kohn-Sham	system,	the	following	relations	can	be	shown	to	hold

� = �0 + �0(⌫ + f
xc

)�

P = �0 + �0f
xc

P

� = P + P⌫�

where	𝜐 is	the	Coulomb	kernel	and	𝑓89 is	the	DFT	xc-kernel: f
xc

= @v
xc

/@⇢ |
⇢=⇢0

✏�1 = 1 + ⌫� ✏ = 1� ⌫P

Random-Phase-Approximation	(RPA): P = �0

✏G,G0(q,!) := �G,G0 � 4⇡e2

|q+G||q+G0|�
0
G,G0(q,!)

Including	changes	in	the	DFT	xc-potential: P = �0 + �0f
xc

P



Calculation	of	optical	properties

The	long-wavelength	limit	(𝐪 ⟶ 𝟎)	of	the	dielectric	matrix	determines	the	optical
properties	in	the	regime	accessible	to	optical	probes.

The	macroscopic	dielectric	tensor	𝜖<(𝜔)

1

q̂ · ✏1(!) · q̂ = lim
q!0

✏�1
0,0(q,!)

can	be	obtained	at	various	levels	of	approximation:

• LOPTICS	=	.TRUE.
)	𝜖3,3(𝐪, 𝜔) in	the	independent-particle	(IP)	picture.
)	neglect	of	local	field	effects:

q̂ · ✏1(!) · q̂ ⇡ lim
q!0

✏0,0(q,!)

• ALGO	=	CHI
)	Including	local	field	effects:	in	RPA	and	due	to	changes	in	the	DFT	xc-potential
LRPA	=	.TRUE.	|	.FALSE.,	default:	.TRUE.



Frequency	dependent	(neglecting	local	field	effects)

LOPTICS	=	.TRUE.
q̂ · ✏1(!) · q̂ ⇡ lim

q!0
✏0,0(q,!)

The	imaginary	part	of 𝜖<(𝜔) (3⨉3	tensor)	of	which	is	given	by	

✏(2)↵�(!) =
4⇡e2

⌦
lim
q!0

1

q2

X

v,c,k

2wk�(✏ck � ✏vk � !)

⇥ huck+qe↵ |uvkihuvk|uck+qe� i

and	the	real	part	is	obtained	by	a	Kramers-Kronig transformation	

✏(1)↵�(!) = 1 +
2

⇡

Z 1

0

✏(2)↵�(!
0)!0

!02 � !2
d!0

The	difficulty	lies	in	the	computation	of	the	quantities

|unk+qe↵i

the	first-order	change	in	the	cell	periodic	part	of	|𝜓?𝒌⟩ w.r.t.	the	Block	vector	k.



First-order	change	in	the	orbitals

Expanding	up	to	first	order	in	q

|unk+qi = |unki+ q · |rkunki+ ...

and	using	perturbation	theory	we	have

|rkunki =
X

n 6=n0

|un0kihun0k|@[H(k)�✏nkS(k)]
@k |unki

✏nk � ✏n0k

where	H(k)	and	S(k)	are	the	Hamiltonian	and	overlap	operator	for	the	cell-periodic
part	of	the	orbitals.



Examples
Gajdoš et	al.,	Phys.	Rev.	B	73,	045112	(2006).

The	frequency	dependent	dielectric	function	is	written	to	the	OUTCAR file.
Search	for

frequency dependent IMAGINARY DIELECTRIC FUNCTION (independent particle, no local field effects)

frequency dependent      REAL DIELECTRIC FUNCTION (independent particle, no local field effects)

and



Frequency	dependent	(including	local	field	effects)

For	the	Kohn-Sham	system,	the	following	relations	can	be	shown	to	hold

� = �0 + �0(⌫ + f
xc

)�

P = �0 + �0f
xc

P

� = P + P⌫�

where	𝜐 is	the	Coulomb	kernel	and	𝑓89 is	the	DFT	xc-kernel: f
xc

= @v
xc

/@⇢ |
⇢=⇢0

✏�1 = 1 + ⌫� ✏ = 1� ⌫P

Random-Phase-Approximation	(RPA): P = �0

✏G,G0(q,!) := �G,G0 � 4⇡e2

|q+G||q+G0|�
0
G,G0(q,!)

Including	changes	in	the	DFT	xc-potential: P = �0 + �0f
xc

P



Irreducible	polarizability	in	the	IP	picture:	𝜒3

The	quantity	we	can	easily	access	in	Kohn-Sham	DFT	is	the:
“irreducible	polarizability	in	the	independent	particle	picture”	𝜒3 (or	𝜒45)

�0
G,G0(q,!) :=

@⇢ind(q+G,!)

@ve↵(q+G0,!)

Adler	and	Wiser	derived	expressions	for	𝜒3 which,	in	terms	of	Block	functions,
can	be	written	as

�0
G,G0(q,!) =

1

⌦

X

nn0k

2wk(fn0k+q � fn0k)

⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G0)r0 | n0k+qi
✏n0k+q � ✏nk � ! � i⌘



And	in	terms	of	Block	functions	𝜒3 can	be	written	as

�0
G,G0(q,!) =

1

⌦

X

nn0k

2wk(fn0k+q � fn0k)

⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G0)r0 | n0k+qi
✏n0k+q � ✏nk � ! � i⌘

The	IP-polarizability:	𝜒3

W = ⌫ + ⌫�0⌫ + ⌫�0⌫�0⌫ + ⌫�0⌫�0⌫�0⌫ + ... = ⌫ (1� �0⌫)
�1

| {z }
✏�1

Once	we	have	𝜒3 the	screened	Coulomb	interaction	(in	the	RPA)	is	computed	as:

1.	The	bare	Coulomb
interaction	between
two	particles

2.	The	electronic	environment
reacts	to	the	field	generated
by	a	particle:	induced	change
in	the	density	𝜒3𝜐,	that	gives
rise	to	a	change	in	the	Hartree
potential:	𝜐𝜒3𝜐.

3.	The	electrons	react
to	the	induced	change	in
the	potential:	additional
change	in	the	density,	𝜒3𝜐𝜒3𝜐,
and	corresponding	change	in
the	Hartree potential:	𝜐𝜒3𝜐𝜒3𝜐.

and	so	on,
and	so	on	…

geometrical
series

Expensive:	computing	the	IP-polarizability	scales	as	N4



The	OUTPUT

• Information	concerning	the	dielectric	function	in	the	independent-particle
picture	is	written	in	the	OUTCAR file,	after	the	line

HEAD OF MICROSCOPIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE)

• Per	default,	for	ALGO=CHI,	local	field	effects	are	included	at	the	level	of
the	RPA	(LRPA=.TRUE.),	i.e.,	limited	to	Hartree contributions	only.
See	the	information	in	the	OUTCAR file,	after

INVERSE MACROSCOPIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

• To	include	local	field	effects	beyond	the	RPA,	i.e.,	contributions	from	DFT
exchange	and	correlation,	on	has	to	specify	LRPA=.FALSE. in	the	INCAR file.
In	this	case	look	at	the	output	in	the	OUTCAR file,	after

INVERSE MACROSCOPIC DIELECTRIC TENSOR (test charge-test charge, local field effects in DFT)



Virtual	orbitals/empty	states
Problem:	the	iterative	matrix	diagonalization	techniques	converge	rapidly	for	the
lowest	eigenstates	of	the	Hamiltonian.	High	lying	(virtual/empty	states)	tend	to
converge	much	slower.

• Do	a	groundstate calculation	(i.e.,	DFT	or	hybrid	functional).
By	default	VASP	will	include	only	a	very	limited	number	of	empty	states
(look	for	NBANDS and	NELECT in	the	OUTCAR file).

• To	obtain	virtual	orbitals	(empty	states)	of	sufficient	quality,	we	diagonalize
the	groundstate Hamilton	matrix	(in	the	plane	wave	basis:	 𝐆 𝐻 𝐆′ )	exactly.
From	the	𝑁FFG eigenstates	of	this	Hamiltonian,	we	then	keep	the	NBANDS
lowest.

Your	INCAR file	should	look	something	like:

..
ALGO = Exact
NBANDS = .. #set to include a larger number of empty states
..



Typical	jobs:	3	steps
1. Standard	groundstate calculation

2. Restart	from	the	WAVECAR file	of	step	1,	and	to	obtain	a	certain	number
of	virtual	orbitals	specify:

in	your	INCAR file.

3. Compute	frequency	dependent	dielectric	properties:	restart	from	the
WAVECAR of	step	2,	with	the	following	in	your	INCAR file:

..
ALGO = Exact
NBANDS = .. #set to include a larger number of empty states
..

ALGO = CHI or LOPTICS = .TRUE.

N.B.:	In	the	case	of	LOPTICS=.TRUE. step	2	and	3	can	be	done	in	the	same
run	(simply	add	LOPTICS=.TRUE. to	INCAR of	step	2).



The	GW	potentials:	*_GW	POTCAR	files



The	static	dielectric	response
The	following	quantities:

• The	ion-clamped	static	macroscopic	dielectric	tensor	𝜖< 𝜔 = 0
(or	simply	𝜖<).

• Born	effective	charge	tensors	𝑍∗:

Z⇤
ij =

⌦

e

@Pi

@uj
=

1

e

@Fi

@Ej

• Electronic	contribution	to	piezo-electric	tensors:

e

(0)
ij = � @�i

@Ej
, i = xx, yy, zz, xy, yz, zx

May	be	calculated	using	density	functional	perturbation	theory	(DFPT):
LEPSILON=.TRUE.
or	from	SC	response	of	the	orbitals	to	a	finite	electric	field	(PEAD):
LCALCEPS=.TRUE. (only	for	insulating	systems!)

(Useful	in	case	one	works	with	hybrid	functionals,	where	LEPSILON=.TRUE.	does	not	work.)



Response	to	electric	field	from	DFPT
LEPSILON=.TRUE.
Instead	of	using	a	sum	over	states	(perturbation	theory)	to	compute	|𝛻𝐤𝑢?𝐤⟩,
one	can	solve	the	linear	Sternheimer equation:

[H(k)� ✏nkS(k)] |rkunki = �@ [H(k)� ✏nkS(k)]

@k
|unki

for	|𝛻𝐤𝑢?𝐤⟩.

The	linear	response	of	the	orbitals	to	an	externally	applied	electric	field	|𝜉?𝐤⟩,
can	be	found	solving

[H(k)� ✏nkS(k)] |⇠nki = ��HSCF(k)|unki � q̂ · |rkunki

where	∆𝐻5QF(𝐤) is	the	microscopic	cell	periodic	change	in	the	Hamiltonian,
due	to	changes	in	the	orbitals,	i.e.,	local	field	effects	(!):	these	may	be	included	at
the	RPA	level	only	(LRPA=.TRUE.)	or	may	include	changes	in	the	DFT	xc-potential
as	well



Response	to	electric	fields	from	DFPT	(cont.)

• The	static	macroscopic	dielectric	matrix	is	then	given	by

q̂ · ✏1 · q̂ = 1� 8⇡e2

⌦

X

vk

2wkhq̂ ·rkunk|⇠nki

where	the	sum	over	v runs	over	occupied	states	only.

• The	Born	effective	charges	and	piezo-electric	tensor	may	be	conveniently
computed	from	the	change	in	the	Hellmann-Feynman	forces	and	the
mechanical	stress	tensor,	due	to	a	change	in	the	wave	functions	in	a	finite
difference	manner:

|u(1)
nki = |unki+�s|⇠nki



The	OUTPUT
• The	dielectric	tensor	in	the	independent-particle	picture	is	found	in	the	OUTCAR

file,	after	the	line
HEAD OF MICROSCOPIC STATIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE, excluding Hartree and local field effects)

Its	counterpart	including	local	field	effects	in	the	RPA	(LRPA=.TRUE.)	after:
MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in DFT)

and	including	local	field	effects	in	DFT	(LRPA=.FALSE.)	after:

• The	piezoelectric	tensors	are	written	to	the	OUTCAR immediately	following:
PIEZOELECTRIC TENSOR  for field in x, y, z        (e  Angst)

c.q.,
PIEZOELECTRIC TENSOR  for field in x, y, z        (C/m^2)

• The	Born	effective	charge	tensors	are	printed	after:
BORN EFFECTIVE CHARGES (in e, cummulative output)

(but	only	for	LRPA=.FALSE.).



Examples

Gajdoš et	al.,	Phys.	Rev.	B	73,	045112	(2006).



“Modern	theory	of	polarization”	(Resta,	Vanderbilt,	et	al.)

The	change	in	the	polarization	induced	by	an	adiabatic	change	in	the	crystalline
potential	is	given	by

�P =

Z �2

�1

@P

@�
d� = P(�2)�P(�1)

where
P(�) = � fie

(2⇡)3

Z

⌦k

dkhu(�)
nk |rk|u(�)

nk i

To	illustrate	this,	consider	a	Wannier function

 k(r) = uk(r)e
ik·r|wi = V

(2⇡)3

Z

⌦k

dk| ki

with	well-defined	dipole	moment

ehri = e

Z
drhw|r|wi

=
eV 2

(2⇡)6

Z

⌦k

dk

Z

⌦k0
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X

R

Z

V
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k(r)(R+ r)uk0(r)e�i(k�k0)·(R+r)



=
eV 2

(2⇡)6

Z

⌦k
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Z

⌦k0

dk0
X

R

Z

V
dru⇤

k(r)uk0(r)(�irk0)e�i(k�k0)·(R+r)

= �i
eV

(2⇡)3

Z

⌦k

dkhuk|rk|uki

where	we	used	integration	by	parts	to	let	𝛻𝐤R work	on	𝑢𝐤R instead	of	on	the	exponent,
and	the	following	relation

X

R

e�i(k�k0)·R =
(2⇡)3

V
�(k� k0)

The	final	expression,	proposed	by	King-Smith	and	Vanderbilt,	to	evaluate	the
polarization	on	a	discrete	mesh	of	k-points,	reads:

Bi ·P(�) =
f |e|
V

Ai

Nk?

X

Nk?

={ln
J�1Y

j=0

det|hu(�)
nkj

|u(�)
mkj+1

i|}

where

kj = k? + j
Bi

J
, j = 1, ..., J and u(�)

nk?+Bi
(r) = e�iBi·ru(�)

nk?
(r)



kj = k? + j
Bi

J
, j = 1, ..., J and u(�)

nk?+Bi
(r) = e�iBi·ru(�)

nk?
(r)



Self-consistent	response	to	finite	electric	fields	(PEAD)†

Add	the	interaction	with	a	small	but	finite	electric	field	ℇ to	the	expression	for	the
total	energy

E[{ (E)}, E ] = E0[{ (E)}]� ⌦E ·P[{ (E)}]

where	𝑃 𝜓(ℇ) is	the	macroscopic	polarization	as	defined	in	the	“modern	theory
of	polarization”‡

P[{ (E)}] = � 2ie

(2⇡)3

X

n

Z

BZ
dkhu(E)

nk |rk|u(E)
nk i

Adding	a	corresponding	term	to	Hamiltonian

H| (E)
nk i = H0| (E)

nk i � ⌦E · �P[{ (E)}]
�h (E)

nk |

allows	one	to	solve	for	 𝜓(ℇ) by	means	of	a	direct	optimization	method
(iterate	intil self-consistency	is	achieved).

†	R.	W.	Nunes and	X.	Gonze,	Phys.	Rev.	B	63,	155107	(2001).
‡	R.	D.	King-Smith	and	D.	Vanderbilt,	Phys.	Rev.	B	47,	1651	(1993).



PEAD	(cont.)

Lc

Z
Eg

VB

CB

L

Souza	et	al.,	Phys.	Rev.	Lett.	89,	117602	(2002).

e|Ec ·Ai| ⇡ Eg/Ni

NiAi < LZ



PEAD	(cont.)
Once	the	self-consistent	solution	 𝜓(ℇ) has	been	obtained:
• the	static	macroscopic	dielectric	matrix	is	given	by

(✏1)ij = �ij + 4⇡
(P[{ (E)}]�P[{ (0)}])i

Ej
• and	the	Born	effective	charges	and	ion-clamped	piezo-electric	tensor	may

again	be	conveniently	computed	from	the	change	in	the	Hellman-Feynman
forces	and	the	mechanical	stress	tensor.

The	PEAD	method	is	able	to	include	local	field	effects	in	a	natural	manner
(the self-consistency).

INCAR-tags

LCALPOL =.TRUE. Compute	macroscopic	polarization.
LCALCEPS=.TRUE. Compute	static	macroscopic	dielectric-,	Born	effective	charge-,

and	ion-clamped	piezo-electrictensors,	including	local	field	effects.
EFIELD_PEAD = E_x E_y E_z Electric	field	used	by	the	PEAD	routines.

(Default	if	LCALCEPS=.TRUE.:	EFIELD_PEAD=	0.01	0.01	0.01	[eV/Å].)
LRPA=.FALSE. Skip	the	calculations	without	local	field	effects	(Default).
LSKIP_NSCF=.TRUE. idem.
LSKIP_SCF=.TRUE. Skip	the	calculations	with	local	field	effects.



Example:	ion-clamped	𝜖< using	the	HSE	hybrid

J.	Paier,	M.	Marsman,	and	G.	Kresse,	Phys.	Rev.	B	78,	121201(R)	(2008).



PEAD:	Hamiltonian	terms

The	additional	terms	in	the	Hamiltonian,	arising	from	the	Ωℇ V 𝐏 𝜓 ℇ term
in	the	enthalpy	are	of	the	from

�
P

j ={ln det|S(kj ,kj+1)|}
�u⇤

nkj

=

� i

2

NX

m=1

⇥
|unkj+1iS�1

mn(kj ,kj+1)� |unkj�1iS�1
mn(kj ,kj�1)

⇤

Snm(kj ,kj+1) = hunkj |umkj+1iwhere

By	analogy	we	have

@|unkj i
@k

⇡ 1

2�k

NX

m=1

⇥
|unkj+1iS�1

mn(kj ,kj+1)� |unkj�1iS�1
mn(kj ,kj�1)

⇤

i.e.,	a	finite	difference	expression	for	|𝛻𝐤𝑢?𝐤⟩.



The	OUTPUT
• The	dielectric	tensor	including	local	field	effects	is	written	to	the	OUTCAR

file,	after	the	line
MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects)

• The	piezoelectric	tensors	are	written	to	the	OUTCAR immediately	following:
PIEZOELECTRIC TENSOR (including local field effects) (e Angst)

c.q.,
PIEZOELECTRIC TENSOR (including local field effects) (C/m^2)

• The	Born	effective	charge	tensors	are	found	after:
BORN EFFECTIVE CHARGES (including local field effects)

For	LSKIP_NSCF=.FALSE.	one	will	additionally	finf the	counterparts	of	the	above:

... (excluding local field effects)



Ionic	contributions

From	finite	difference	expressions	w.r.t.	the	ionic	positions	(IBRION=5 or	6)
or	from	perturbation	theory	(IBRION=7 or	8)	we	obtain

�ss0

ij = �@F s
i

@us0
j

⌅s
il = � @�l

@us
i

the	force-constant	matrices	and	internal	strain	tensors,	respectively.

Together	with	the	Born	effective	charge	tensors,	these	quantities	allow	for	the
computation	of the	ionic	contribution	to	the	dielectric	tensor

✏ionij =
4⇡e2

⌦

X

ss0

X

kl

Z⇤s
ik (�

ss0)�1

kl Z
⇤s0
lj

and	to	the	piezo-electric	tensor

eionil = e
X

ss0

X

jk

Z⇤s
ij (�

ss0)�1

jk ⌅
s0

kl



The	End

Thank	you!


