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the Kohn-Sham Groundstate

the Free Energy Functional

electronic contribution of the Kohn-Sham free energy FKS at
finite T :

FKS [φ, f , ~R] =
∑
n

fn < φn|T̂ |φn > −
∑
n

σS(fn)

+ EH [ρ] + Exc [φ, f ] +

∫
Vion(~r)ρ(~r)d3~r

with contributions of the kinetic energy,

entropy of non-interacting e−,

Hartree term,

exchange-correlation energy and the

ionic potential
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Electronic Convergence

the Free Energy Functional

FKS [φ, f , ~R] =
∑
n

fn < φn|T̂ |φn > −
∑
n

σS(fn)

+ EH [ρ] + Exc [φ, f ] +

∫
Vion(~r)ρ(~r)d3~r

~R: ions’ positions,

fn: levels’ occupancies,

φ : 1− e− orbitals

electron density ρ =
∑occ

n=1 fn|ψn(~r)|2

going beyond DFT,

Exc [φ, f ] = E loc
xc [ρ]︸ ︷︷ ︸

LDA,GGA

+ E nl
x [φ, f ]︸ ︷︷ ︸
XXC
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the Self-Consisteny Cycle
Selfconsistency Scheme

trial-charge ρin and trial-wavevectors ψnH H H H

I
set up Hamiltonian H � ρin �

I
iterative refinements of wavefunctions � ψn �

I
new charge density ρout � ∑n fn� ψn � r �� 2

I
refinement of density ρin� ρout " new ρin

IJJJJJ K K K K KKKKKK J J J J Jno ∆E L Ebreak

calculate forces, update ions

M

I

M

N two subproblems

optimization of � ψn � and ρin

N refinement of density:

DIIS algorithm

P. Pulay, Chem. Phys. Lett. 73,

393 (1980).

N refinement of wavefunctions:

DIIS or Davidson algorithm

G. KRESSE, ELECTRONIC OPTIMISATION Page 7

2 optimization loops

inner (el): refinement of
wavefunctions:
optimization of {ψn}

outer (el): refinement of
ρin charge density mixing

outer (ionic) refinement
of atoms’ positions:
minimisation of the
forces
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Numerical Determination of the electronic groundstate

Iteration to Self-Consistency

self-consistent solution of HΨ = E Ψ

old-fashioned:
1 start with a trial ρ0

in
2 solve the Schrödinger eqn.
3 calculate the new density ρout =

∑occ |ψn|2
4 mix charge densities: ρnew = nρin + (n − 1)ρout
5 construct the new Schrödinger eqn. using ρnew
6 iterate 2-5 until convergence is reached

– slow

Doris Vogtenhuber
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Numerical Determination of the electronic groundstate

Direct Minimization of the Functional

modern, based on the method of Car-Parrinello:

used if the diagonalization of H is the bottleneck of the
calculation

minimize the value of the functional Fn(~r)

gradient : Fn(~r) = [− ~2

2me
∇2 + V eff(~r , ρ(~r ′))− εn]φn

start with a set of trial wavefunctions φ0
n(~r) with

n = 1,. . . Ne(/2) (eg random numbers)

converge each band iteratively, starting from φ0
n, diagonalizing

the Hamiltonian

supported by VASP (versions up from vasp.4.6)
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Basic Algorithms used in VASP

Overview

almost all algorithms used by VASP are based on iterative
matrix diagonalization schemes

1 blocked Davidson (DAV)
2 conjugate gradient (CG)
3 residual minimization (RMM), direct inversion in the iterative

subspace (DIIS)

a small amount of a residual vector |Rn > is added to the
function f to refine f (f = |φn >, ρ, ....)
in iterative diagonalization methods, |R(φn) > is used to
update the wavefunction: φ′n = φn + λRn (in the sense of a
steepest descent approach)

minimize the norm of |Rn >

Doris Vogtenhuber
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Basic Algorithms used in VASP

Residual Vectors: wavefunction (|φn >)

start with some trial φn for an eigenstate n of Ĥ

variation of the Rayleigh quotient with respect to < φn| −→
residual vector |R(φn) >:

εappr.
n =

< φn|H|φn >
< φn|S|φn >

−→ |R(φn) >= (H− εappr.
n S)|φn >

aim: find a matrix K which gives the exact error of the
wavefunction (preconditioning), to find the optimal |Rn >

Doris Vogtenhuber
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Basic Algorithms used in VASP

Preconditioning (I)

aim: find a unitary matrix (“rotation matrix”) K that yields:

the exact error in the trial wavefunction (ideally in a single
step)

a preconditioned residual vector |pn〉 = K|Rn〉
based on the ansatz of Teter et.al:
as Ekin dominates H for large ~G , −→ K = K( 3

2 Ekin(~R))
G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169, (1996),

〈G|K|G′〉 = δGG′
27 + 18x + 12x2 + 8x3

27 + 18x + 12x2 + 8x3 + 16x4
, with

x =
~2

2m

G 2

3
2 E kin(~R)

,
Doris Vogtenhuber



Electronic Convergence
Charge Density Mixing

Sampling the Brillouin Zone

Introduction
the SCF-scheme
Basic Algorithms used in VASP

Basic Algorithms used in VASP

Preconditioning (II)

preconditioning using hybrid functionals (M. Marsman,
G. Kresse, to be published): the optimal K to optimize

F̄ [K, f ′] =
∑
n

∑
kl

f ′nK
∗
nlKnk < φl |T̂ |φk > −

∑
n

σS(f ′n)

+ EH [ρ] + Ēxc [K, f ′] +

∫
Vion(~r)ρ(~r)d3~r

with ρ(~r) =
∑

n

∑
kl f ′nK

∗
nlKnkφ

∗
l (~r)φk(~r)

φ′n =
∑

m Knmφm

linearization of EXC around the present set of orbitals:

matrix elements for a fixed, non-local Fock Vxc calculated at
the start of the self-consisteny procedure, not updated during
the search of the optimal Knm.
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Basic Algorithms used in VASP

Blocked Davidson Scheme (DAV)

1 select subset {φ1
k |k = 1, .., n1} of all bands {φn|n = 1, ..,Nbands}

2 optimize φ1
k by adding the orthogonalized preconditioned |Rn > (|pn >) to

the presently considered subspace

3 Rayleigh Ritz optimization in the space spanned by these vectors
(“sub-space” rotation in the 2 ∗ n1 dim. space)

4 determine n1 lowest vectors {φ2
k |k = 1, ..., n1}

5 iterate 2-4 if required

6 store the optimized w.f. back in the set {φk |k = 1, ..n1, ..,Nbands}.
7 continue steps 1-4 with next sub-block {φ1

k |k = n1 + 1, .., 2n1}
8 after each block of band has been optimized:

Rayleigh Ritz optimization in the space {φk |k = 1, ..,Nbands}
9 approximately a factor of 1.5-2 slower than RMM-DIIS, but always stable.

Doris Vogtenhuber
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Basic Algorithms used in VASP

Blocked Davidson (DAV)

1 {φn|n = 1, ..,Nbands} ⇒ {φ1
k |k = 1, .., n1}

2 optimize this subset

φ1
k / g

1
k = (1−

Nbands∑
n=1

|φn〉〈φn|S)︸ ︷︷ ︸
orthonormalization operator

K (H− εappS)φ1
k | k = 1, .., n1 >

3 Rayleigh Ritz optimization −→ {φ2
k |k = 1, n1}

4 add additional preconditioned residuals

φ2
k / g

1
k / g

2
k = (1−

Nbands∑
n=1

|φn >< φn|S)K(H− εappS)φ2
k >, | k = 1, .., n1

5 add a fourth set of preconditioned vectors if required,. . .

Doris Vogtenhuber
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Basic Algorithms used in VASP

Conjugate Gradient (CG)

strictly sequential: bands are optimized one after another

optimization of FKS with respect to the wavefunctions yields a gradient
|gn >

|gn >= fn (1−
∑
m

|φm >< φm|)Ĥ|φn >︸ ︷︷ ︸
1

+
∑
m

1

2
Hnm(fn − fm)|φm >︸ ︷︷ ︸

2

with Ĥ = T̂ + V̂ion + V̂H(ρ) + V̂xc [φ, f ]

V̂xc includes the local Vxc (and the non-local screened Fock-exchange).

1: changes in FKS with respect of changes in the φ orthogonal to the
subspace spanned by the current φ

2: changes in FKS with the subspace spanned by the current φ (=0 if only
occupied orbitals are included)

Doris Vogtenhuber
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Basic Algorithms used in VASP

Conjugate Gradient (CG)

search direction determined by using Loewdin’s perturbation theory:

Unm = δnm −∆s
Hnm

Hmm −Hnn
, φ′n =

∑
m

Unmφm

U. . . unitary matrix, chosen such that < φ′n|H|φ′m >= εmδnm

step direction ≈ Hmm −Hnn

∆s step width along the search direction

implemented algorithms include:

(preconditioned) steepest descent
(preconditioned) conjugated gradient

Doris Vogtenhuber
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Basic Algorithms used in VASP

Residual Minimization - direct inversion in the iterative subspace
(RMM-DIIS)

most time consuming step in CG: orthonormalization of the
preconditioned residual vector to the current set of trial
wavefunctions (for each single band update)

avoided by minimizing the norm of the residual vector instead of the
Rayleigh Ritz quotient
P. Pulay, Chem. Phys. Lett.73,393 (1980), D.M. Wood, A. Zunger,
J. Phys A, 1343 (1985)).

each vector is optimized individually

fast

drawback: always finds the vector which is closest to the initial trial
vector: −→ if the initial set does not span the real ground state,
some states may be “missing” in the final solution.

Doris Vogtenhuber
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Basic Algorithms used in VASP

Residual Minimization - direct inversion in the iterative subspace
(RMM-DIIS)

1 calculate a preconditioned residual vector K|R0
m >= K|R(φ0

m) >

2 perform a trial step with width λ along this direction:
|φ1

m >= |φ0
m > +λK|R0

m >

3 −→ new residual vector |R1
m >= |R(φ1

m) >

4 search for the linear combination of |φ0
m > and |φ1

m >,

|φMm >=
∑M

i=0 αi |φim > (here: M = 1),

yielding |RM
m >=

∑M
i=0 αi |R i

m >
minimize ||R|| by determining the lowest eigenvector/eigenvalue of∑M

j=0 < R i
m|R j

m > αj = ε
∑M

j=0 < φim|S|φjm > αj

5 start from 1, using |φMm > and |RM
m >

Doris Vogtenhuber
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Basic Algorithms used in VASP

Further Algorithms

based on CG: simultaneous update of all orbitals

MD-like Damped velocity friction algorithm (see lecture 3)
(requires the definition of a timestep)

exact diagonalization: whenever there is a substantial amount
(> 30-50% ) of unoccupied bands (eg for GW calculations )

subspace rotation and diagonalization in the sub-space
spanned by NBANDS

Doris Vogtenhuber
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Parameters to be set in INCAR

choice of the electronic convergence algorithms

ALGO algorithms to be used (alternative: IALGO):
implemented in vasp.4.6 and vasp.5
Normal (DAV) | Fast (DAV+RMM-DIIS) | VeryFast
(RMM-DIIS) |
implemented in vasp.5 only
| Damped (damped MD) | All (damped MD+precond. CG)
| Exact | Diag | Subrot | Eigenval | None | Nothing |
for Hybrid functionals, always use direct optimization (A,
Exact)

LDIAG (True | False): perform subspace diagonalization

TIME time step for damped MD-based algorithms

Doris Vogtenhuber
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DIIS Mixing Algorithms

calculation of the input density for the next el. step from
ρnew = mρin + (m − 1)ρout :

minimize the norm of the residual vector
R[ρin] = ρout[ρin]− ρin
assume R can be linearized around ρsc:

R[ρ] = −J(ρ− ρsc)

R[ρ] ≈ R[ρ](m) − J(m)(ρ(m) − ρsc)

ρ(m+1) = ρ(m) + G(m)(ρ
(m)
out − ρ

(m)
in )

G(m) = −J(m)−1

Doris Vogtenhuber
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DIIS Mixing

J = 1− χU: “charge dielectric” (Jacobian) matrix:

in a system with a dielectric susceptibility χ, an external
charge perturbation (∆ρ) leads to a change in the potential

U = 4πe2

q2 .

model dielectric function implemented in VASP:
G.P. Kerker, Phys.Rev.B23, 3082 (1981):

J ≈ AMIX ·max(
q2

q2 + BMIX
, AMIN)

BMIX . . . q− cutoff wavevector for the Kerker approx.

Doris Vogtenhuber
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DIIS Mixing

the convergence behaviour is determined by the width of the
eigenvalue spectrum of J = 1− χ4πe2

q2

insulators, semiconductors: constant, indepedent of the
system size L ⇒ good convergence

metals:

short wavelength limit (large q) −→ J ≈ 1: no screening
long wavelength limit: the screening term dominates J:
−→ J ≈ q−2 ∼ L2

⇒ the width of the spectrum is proportional to the square of
the longest dimension of the lattice
⇒ poor convergence, possibly charge sloshing.

Doris Vogtenhuber
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Available Mixing Algorithms

Linear Mixing (n = AMIX )

ρ
(m+1)
in = nρ

(m)
in + (n − 1)ρ

(m)
out

Kerker Mixing (BMIX)

ρmix(G ) = ρin(G ) +AMIX ·max(
G 2

G 2 + BMIX
, AMIN)[ρout(G )−ρin(G )]

Broyden Mixing, (WC = 0)
D.D.Johnson, Phys.Rev.B38, 12807 (1988)
information of the current iteration (m) updates J−1 but also
overrides information of from previous iterations

Pulay Mixing (WC > 0)
P.Pulay,Chem.Phys.Lett73, 393 (1980)

information from all previous iterations is included with equal

weights.
Doris Vogtenhuber
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Available Mixing Algorithms

Tchebycheff mixing via a 2nd order equation of motion, using
a simple velocity Verlet algorithm
H.Akai and P.H.Dederichs, J.Phys.C 18, 2455 (1985)

ρ̈mix(G ) = 2 · J(G)[ρout(G )− ρin(G )]− µρ̇in(G )

µ = friction (damping) factor

Doris Vogtenhuber
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Parameters to be set in INCAR

IMIX: Mixing type:
0 (no mixing) | 1 (Kerker) | 2 (Tchebycheff) |
4 Broyden (WC=0) or Pulay (WC>0)

Kerker mixing BMIX, BMIX MAG: cutoff wavevectors

for Boyden-type mixing: INIMIX, MIXPE, MAXMIX, WC

INIMIX functional form of the initial mixing matrix
MIXPRE metric for the Broyden scheme
MAXMIX max. # of steps stored in the Broyden scheme
WC weight factor for each iteration

Doris Vogtenhuber
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what to do if convergence fails (DFT-level)
What to do when electronic convergence fails

use Davidson (ALGO=N)

use this setting

fails to converge

converges

ICHARG=12 (no charge update)

ICHARG=2
AMIX=0.1 ; BMIX=0.01

converges

increase BMIX
BMIX=3.0 ; AMIN=0.01

converges

fails to converge

fails to converge

bug report
after positions have been checked

fails to converge

play with mixing parameters

converges

G. KRESSE, ELECTRONIC OPTIMISATION Page 22
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Some Basics

Periodicity

perfect periodic lattices: translational symmetry: each unit
cell is repeated at ~R by shifting it by N ·~a
(~a = n1 ~a1 + n2 ~a2 + n3 ~a3 lattice vector)
with respect to some “origin of the lattice”:

applying a translation operator T̂~ai : T̂~ai (
~0) = ~R

T̂ and Ĥ commute ( [T̂ , Ĥ] = 0 )

⇒ T̂ and Ĥ have the same eigenfunctions.

T̂~R |~0
〉

= |~R
〉

= λ · |~0
〉

〈
~R|~R

〉
= λ∗λ ·

〈
~0|~0
〉

⇒ λ∗λ = 1

⇒ λ = e i~k , k ∈ R

Doris Vogtenhuber
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Some Basics (continued)

periodicity (continued)

translation by a lattice vector ~R

T̂~R
|~0
〉

= |~R
〉

= e i ·
~k·~R · |~0

〉
⇒ for any Ψ that satisfies the Schrödinger equation in a
periodic potential, ∃~k such, that a translation by ~R is

equivalent to a multiplication by the phase factor e i ·
~k·~R ,

eg. for e−-waves

Ψ(~r + ~R) = e i ·
~k·~RΨ(~r).

Doris Vogtenhuber
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periodicity: Range of ~k

for any lattice vector of the reciprocal lattice defined by unit
vectors (~bi = 2π

Ω
~aj × ~ak)

~Gn = m1
~b1 + m2

~b2 + m3
~b3,

let ~k ′ = ~k + ~Gn,

Ψ~k′(~r + ~R) = e i·~k′·~RΨ(~r) = e i·~k·~R e i· ~Gn·~R︸ ︷︷ ︸
≡1

Ψ(~r)

range of allowed values for ~k: within the first Brillouin zone
(BZ)

0 < k ≤ 2π

a
or − π

a
< k ≤ π

a

for finite crystals: # ~k 6=∞
→ ? allowed number of ~k → quantization of ~k

Doris Vogtenhuber
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Some Basics (continued)

Quantisation of ~k

cyclic Born-von Kármán boundary conditions (l = N1a1)

unperturbed (ideal) crystal (eg 1D chain with length l),

N1: number of unit cells of the macroscopic crystal along x

N1: large enough to provide that effects of the crystal shape
are negligible.

Ψ(~x + N1~a1) = Ψ(~x), ~∇Ψ(~x + N1~a1) = ~∇Ψ(~x)

Ψ(x + N1a1) = e ik1N1a1 Ψ(x) ⇒ e ik1N1a1 = 1

k1N1a1 = 2πm1 ⇒ k1 =
2πm1

N1a1
, m1 ∈ Z

0 < m1 ≤ N1 or −N1

2
< m1 ≤

N1

2

Doris Vogtenhuber



Electronic Convergence
Charge Density Mixing

Sampling the Brillouin Zone

Basics
BZ Sampling
Files and Parameters, Problem Handling

Some Basics (continued)

energy bands

proper wavefunctions in a periodic lattice: Ψ~k(~r) = e i~k~r︸︷︷︸
BlochFactor

·u(~r)

where u(~r) is a cell-periodic function of the lattice

the eigenvalues εn(~k) of a crystal of fixed, finite volume V : discrete
spectrum of Ĥ:

ĤΨ~k+ ~Gn
(~r) = ĤΨn~k(~r) = ε~k+ ~Gn

Ψn~k(~r), ε~k+ ~Gn
= εn(~k)

∀n: the set of electronic levels εn(~k) is the “nth energy band”.

the eigenstates and -values are periodic with ~k in the reciprocal
lattice (“extended zone sheme”)

Doris Vogtenhuber
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Some Basics (continued)

Γ 0.02 0.04 ∆ 0.08 0.1 X
| k |

-2

-1.5

-1

-0.5

0

E
 [e

V
]

unit cell: a, b, c, (1 atom/cell)
unit cell: 2a, b, c (2 atoms/unit cell)

s-like bands for a primitive cell and a supercell with 2 atoms

Supercells

example: bandstructure of
(super)cells containing 1 (2)
atoms with 2 s-electrons

~a′ = 2~a ⇒ ~k ′1 = 1
2
~k1

folding of the bandstructure

cell size 1a 2a
# bands 1 2
~k-pts Γ Γ

∆ X
X Γ

⇒ for constant ~k-grid-density:
N(~k ′) = 1

2 N(~k)
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Sampling of the Brillouin Zone

Integrals over the Brillouin zone IBZ :

for the calculation of e.g. Density of states (DOS), Charge
densities, ....

Integrals over the Brillouin zone are usually replaced by sums
over special ~k-points:

I (ε) =
1

ΩBZ

∫
BZ

F (ε)δ(εn~k − ε)d~k −→
∑
~k

w~ki F (ε)δ(εn~k − ε)

Symmetry of the lattice: BZ −→ irreducible BZ (IBZ)

ΩIBZ =
ΩBZ

NR̂

NR̂ : number of symmetry operations of the point group
Doris Vogtenhuber



Electronic Convergence
Charge Density Mixing

Sampling the Brillouin Zone

Basics
BZ Sampling
Files and Parameters, Problem Handling

Sampling of the Brillouin Zone

~k-mesh generation

the BZ should be covered by equally-spaced ~k-point grids,
e.g. Monkhorst-Pack meshes
H.J. Monkhorst, J.D. Pack, PRB 13, 5188, (1976)

~k = ~b1
n1 + s1

N1
+ ~b2

n2 + s2

N2
+ ~b3

n3 + s3

N3

~b unit vector of the BZ

si optional shift along direction i

Ni number of subdivisions along i
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example of a MP-mesh of a 2D square lattice

1b

r

2b

r

BZ

IBZ

k1k1
k3
k2

0

½

Mesh data

full BZ: N1 = N2 = 4⇒
n~k(BZ)=16

NR̂ = 4⇒ n~k(IBZ) =4

w~k1
= w~k2

(IBZ) = 4
16 = 1

4

w~k3
= 8

16 = 1
2

1
ΩBZ

∫
BZ

F (~k)d~k −→

1
4 F (~k1)+ 1

4 F (~k2)+ 1
2 F (~k3)
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example: bandstructure energy

k0 ½-½

E

e.g: one s-like band

F (~k) = ε(~k)

E =
∑
k

wki εki

Γ: no nodes in Ψ⇒ ε=min

X : max # of nodes in Ψ⇒ ε=max

to increase the accuracy:

increase the density of the ~k-mesh
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Smearing Methods

problem in metallic systems: some bands cross the Fermi level
EF = µ
⇒ discontinuity of the occupancy f of bands at EF = µ

k0 ½-½

E

eF

band n crossing Ef

eg: bandstructure energy

Eb =
∑
n,~ki

w~ki
ε(~ki , n)f (ε(~ki , n)− µ)

ocupancy of state (~ki , n)

f (ε(~ki , n)− µ) = { 1 . . . ε(~ki , n) ≤ µ
0 . . . ε(~ki , n) > µ
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Smearing Methods

Fermi-Dirac smearing

f

(
ε(n,~k) − µ

σ

)
=

1

exp
(
ε(n,~k)−µ

σ

)
+ 1

σ = kBT . . . smearing parameter (≈ electronic T of the
system)

energy E is no longer variational with respect to the partial
occupacies f

the new variational functional is the Free energy F
F = E −

∑
n
σS(fn)

S : entropy of a system of non-interacting electrons at a finite
temperature T

S(f )=− [f ln f + (1− f ) ln(1− f )]

Doris Vogtenhuber



Electronic Convergence
Charge Density Mixing

Sampling the Brillouin Zone

Basics
BZ Sampling
Files and Parameters, Problem Handling

Smearing Methods

Gaussian Smearing

levels are broadened with a Gaussian function

f is the integral of the Gaussian function:

f
(
εn,~k−µ
σ

)
= 1√

2πσ2
exp

(
ε
n,~k
−µ

σ

)2

,
∫

f = 1
2

[
1− erf

(
εn,~k−µ
σ

)]
analytical inversion of the error-function erf does not exist

⇒ S and F cannot be written in terms of f ,

S
(
ε−µ
σ

)
= 1

2
√
π

exp−( ε−µσ )2

σ has no physical interpretation.

variational functional F (σ) differs from E (0).

Forces: ~F (F (σ)) are not necessarily equal to ~F (E (0)).

workaround: extrapolation to σ −→ 0:
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Smearing Methods

Methfessel-Paxton smearing

generalization of Gaussian
broadening with functions of
higher order

expansion of stepfunction in a
complete set of orthogonal
functions:

Hermite polynomials of order N

term of N = 0: integral over
Gaussians
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Smearing Methods

Methfessel-Paxton smearing

MP smearing

Hermite-polynomial of order N
f0(x) =

1
2
(1− erf(x))

fN(x) =

f0(x) +
N∑

m=1

AmH2m−1(x)e
−x2

SN(x) =
1
2
ANH2N(x)e

−x2

deviation of F (σ) from E(0) only
of order 2+N in σ

extrapolation for σ → 0 usually
not necessary, but possible:

E(0) ≈ Ê(σ) =
1

N+2
((N + 1)F (σ) + E(σ))
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Smearing Methods

Methfessel-Paxton Smearing

MP of order N leads to a negligible error, if F (ε) is
representable as a polynomial of degree 2N around εF.

linewidth σ can be increased for higher order N to obtain the
same accuracy

”entropy term”: S = σ
∑

n SN(fn) describes deviation of F (σ)
from E (σ).
⇒ if S < few meV: Ê (σ) ≈ F (σ) ≈ E (σ) ≈ E (0).

⇒ forces correct within that limit.

in practice: smearings of order N=1 or 2 are sufficient
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Tetrahedron Intrgration

The Linear Tetrahedron Method

(I)BZ is subdivided into tetrahedra
spanned by the ~k-points

function X to be integrated: linearly
interpolated between the tetrahedra
−→ X̄

tetrahedra are remapped onto the
~k-points, ~k-points have effective
weights (≈ occupancies)

wnj = 1
ΩBZ

∫
ΩBZ

d~kcj(~k)f
(
εn(~k)

)
X̄ =

∑4
j=1 cj(~k)X (~kj) ←−

∫
X̄
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Tetrahedron Intrgration

Possible Drawbacks of the Linear T.M.

≥ 4~k-pts necessary, Γ must be included

tetrahedra can break the symmetry of the
Bravais lattice

linear interpolation of f may under- or
overestimate the real curve

the errors due to this linear interpolation
only cancel for full bands (problem for
metals)

the afforded density of the ~k-mesh (# of
tetrahedra) can be large
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T.M., Blöchl Corrections

improvements, drawbacks

P.Blöchl et.al., PRB49, 16223 (1994)

for metals: correction of quadratic errors is possible

δw~kn =
∑
T

1
40 DT(EF )

4∑
j=1

(εjn − ε~kn)

(T . . . tetrahedra, D . . . DOS of T at E = EF )

best ~k -point convergence for energy

drawbacks (if used for metals):

wnj : not variational with the cange of ionic positions
⇒ the new effective partial occupancies do not minimize the
groundstate total energy
⇒ variation of occupancies wn~k w.r.t. the ionic positions
would be necessary
with US-PP and PAW practically impossible
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~k-point generation

choice of ~k-points as implemented in VASP

used files: KPOINTS, INCAR

generate equally spaced ~k- mesh

shift it by si (if shift is defined in KPOINTS)

apply the symmetry operations of the symmetry group of the
lattice if ISYM > 0: this includes the symmetries of the

Bravais lattice (POSCAR) ,
atomic positions (POSCAR) ,
pre-set MD-velocities (POSCAR) ,
magnetic ordering (INCAR)

extract the ~k points lying in the IBZ (−→ IBZKPT)

calculate the proper weights w~ki
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Input files: KPOINTS

specifies the ~k mesh to be used

Automatic mesh

0

G (M)

4 4 4

0. 0. 0.

general format for scf runs, DOS

1 header (comment)

2 N~k = 0: automatic generation scheme

3 Γ (M)-centered MP grid

4 # of subdivisions Ni along bi

5 optional shift of the mesh (si )
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Input files: KPOINTS

high symm. lines

10

Line-mode

rec

0 0 0

0.5 0.0 0

0.5 0.0 0

0.5 0.5 0.0

0.5 0.5 0.0

0.5 0.5 0.5

for bandstructure plots (DFT only)

eg for a simple cubic structure

1 header (comment)

2 intersections along each given
symmetry line in the BZ

3 Γ–X

4 X –M

5 M–R

this format must not be used for hybrid
functional band structures
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Input files: INCAR

BZ-integration related Input Parameters

ISMEAR=: BZ integration method :
-1 (Fermi) | 0 (Gaussian) | 1,2 MP | -5 (Blöchl)
for relaxation of metals use 1 or 2

SIGMA: smearing width σ:
S-contribution to F should not exceed a few meV/atom
small-gap semiconductors!: σ < 1

2 Egap

ISYM: use of symmetrisation (~k-mesh spans the BZ or the
IBZ)
-1 | 0 (no symm) | 1,2 (symmetry used)
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Setup of a proper ~k-mesh

Some Hints

always check for proper ~k-mesh convergence before the
production runs

supercells: rescale the ~k-mesh (preserve the density of the
mesh)

slabs (long axis ⊥ to the surface, eg z) : N1 × N2×1

free atoms, molecules 1×1×1 (Γ-point only)
~k meshes for tetrahedra BZ-integration have to include Γ and
the ~k- points at the BZ-edges

the KPOINTS - file format for DFT band-structure plots must
not be used for calculations using hybrid functionals.
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