VASP: running on HPC resources

University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

The Many-Body Schrödinger equation

$$\hat{H}\Psi(\mathbf{r}_1,...,\mathbf{r}_N) = E\Psi(\mathbf{r}_1,...,\mathbf{r}_N)$$

$$\left(-\frac{1}{2}\sum_{i}\Delta_{i}+\sum_{i}V(\mathbf{r}_{i})+\sum_{i\neq j}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|}\right)\Psi(\mathbf{r}_{1},...,\mathbf{r}_{N})=E\Psi(\mathbf{r}_{1},...,\mathbf{r}_{N})$$

For instance, many-body WF storage demands are prohibitive:

5 electrons on a 10×10×10 grid ~ 10 PetaBytes !

A solution: map onto "one-electron" theory:

 $\Psi(\mathbf{r}_1,...,\mathbf{r}_N) \to \{\psi_1(\mathbf{r}),\psi_2(\mathbf{r}),...,\psi_N(\mathbf{r})\}$

Hohenberg-Kohn-Sham DFT

Map onto "one-electron" theory:

$$\Psi(\mathbf{r}_1,...,\mathbf{r}_N) \to \{\psi_1(\mathbf{r}),\psi_2(\mathbf{r}),...,\psi_N(\mathbf{r})\} \quad \Psi(\mathbf{r}_1,...,\mathbf{r}_N) = \prod_i^N \psi_i(\mathbf{r}_i)$$

Total energy is a functional of the density:

 $E[\rho] = T_s[\{\psi_i[\rho]\}] + E_H[\rho] + \frac{E_{xc}[\rho]}{E_{xc}[\rho]} + E_Z[\rho] + U[Z]$

The density is computed using the one-electron orbitals:

$$\rho(\mathbf{r}) = \sum_{i}^{N} |\psi_i(\mathbf{r})|^2$$

The one-electron orbitals are the solutions of the Kohn-Sham equation:

$$\left(-\frac{1}{2}\Delta + V_Z(\mathbf{r}) + V_H[\rho](\mathbf{r}) + V_{\mathrm{xc}}[\rho](\mathbf{r})\right)\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})$$

BUT:

$$E_{\rm xc}[\rho] = ???$$
 $V_{\rm xc}[\rho](\mathbf{r}) = ???$

Exchange-Correlation

 $E_{\rm xc}[\rho] = ???$ $V_{\rm xc}[\rho]({\bf r}) = ???$

- Exchange-Correlation functionals are modeled on the uniform-electron-gas (UEG): The correlation energy (and potential) has been calculated by means of Monte-Carlo methods for a wide range of densities, and has been parametrized to yield a density functional.
- LDA: we simply pretend that an inhomogeneous electronic density locally behaves like a homogeneous electron gas.
- Many, many, many different functionals available: LDA, GGA, meta-GGA, van-der-Waals functionals, etc etc

An N-electron system: $N = O(10^{23})$

Hohenberg-Kohn-Sham DFT takes us a long way:

 $\Psi(\mathbf{r}_1, ..., \mathbf{r}_N) \to \{\psi_1(\mathbf{r}), \psi_2(\mathbf{r}), ..., \psi_N(\mathbf{r})\}$ (#grid points)^N N × (#grid points)

Nice for atoms and molecules, but in a realistic piece of solid state material N= O(10²³)!

Translational invariance: Periodic Boundary Conditions

Translational invariance implies:

$$\psi_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = \psi_{n\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\mathbf{R}}$$

and

$$\psi_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\mathbf{r}}$$

$$u_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$$

All states are labeled by *Bloch vector* **k** and the *band index* n:

- The Bloch vector **k** is usually constrained to lie within the first Brillouin zone of the reciprocal space lattice.
- The band index *n* is of the order if the number of electrons per unit cell.

Reciprocal space & the first Brillouin zone

Α

В

 $\mathbf{b}_1 = \frac{2\pi}{\Omega} \mathbf{a}_2 \times \mathbf{a}_3 \quad \mathbf{b}_2 = \frac{2\pi}{\Omega} \mathbf{a}_3 \times \mathbf{a}_1 \quad \mathbf{b}_3 = \frac{2\pi}{\Omega} \mathbf{a}_1 \times \mathbf{a}_2$

 $\Omega = \mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3 \qquad \mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$

Sampling the 1st BZ

The evaluation of many key quantities involves an integral over the 1st BZ. For instance the charge density:

$$\rho(\mathbf{r}) = \frac{1}{\Omega_{\rm BZ}} \sum_{n} \int_{\rm BZ} f_{n\mathbf{k}} |\psi_{n\mathbf{k}}(\mathbf{r})|^2 d\mathbf{k}$$

We exploit the fact that the orbitals at Bloch vectors **k** that are close together are almost identical and approximate the integral over the 1^{st} BZ by a weighted sum over a discrete set of **k**-points:

$$\rho(\mathbf{r}) = \sum_{n\mathbf{k}} w_{\mathbf{k}} f_{n\mathbf{k}} |\psi_{n\mathbf{k}}(\mathbf{r})|^2 d\mathbf{k},$$

Fazit: the intractable task of determining $\Psi(\mathbf{r}_1, ..., \mathbf{r}_N)$ with N=10²³, has been reduced to calculating $\psi_{n\mathbf{k}}(\mathbf{r})$ at a discrete set of **k**-points in the 1st BZ, for a number of bands that is of the order if the number of electrons in the unit cell.

The total energy

$$E[\rho, \{\mathbf{R}, Z\}] = T_s[\{\psi_{n\mathbf{k}}[\rho]\}] + E_H[\rho, \{\mathbf{R}, Z\}] + E_{\mathrm{xc}}[\rho] + U(\{\mathbf{R}, Z\})$$

The kinetic energy

$$T_s[\{\psi_{n\mathbf{k}}[\rho]\}] = \sum_{n\mathbf{k}} w_{\mathbf{k}} f_{n\mathbf{k}} \langle \psi_{n\mathbf{k}} | -\frac{1}{2} \Delta | \psi_{n\mathbf{k}} \rangle$$

The Hartree energy

$$E_{\mathrm{H}}[\rho, \{\mathbf{R}, Z\}] = \frac{1}{2} \iint \frac{\rho_{eZ}(\mathbf{r})\rho_{eZ}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' d\mathbf{r}$$

where

$$\rho_{eZ}(\mathbf{r}) = \rho(\mathbf{r}) + \sum_{i} Z_i \delta(\mathbf{r} - \mathbf{R}_i) \qquad \rho(\mathbf{r}) = \sum_{n\mathbf{k}} w_{\mathbf{k}} f_{n\mathbf{k}} |\psi_{n\mathbf{k}}(\mathbf{r})|^2 d\mathbf{k}$$

The Kohn-Sham equations

$$\left(-\frac{1}{2}\Delta + V_H[\rho_{eZ}](\mathbf{r}) + V_{xc}[\rho](\mathbf{r})\right)\psi_{n\mathbf{k}}(\mathbf{r}) = \epsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r})$$

The Hartree potential

$$V_H[\rho_{eZ}](\mathbf{r}) = \int \frac{\rho_{eZ}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

A plane wave basis set

$$\psi_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\mathbf{r}} \qquad \qquad u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$$

All cell-periodic functions are expanded in plane waves (Fourier analysis):

$$u_{n\mathbf{k}}(\mathbf{r}) = \frac{1}{\Omega^{1/2}} \sum_{\mathbf{G}} C_{\mathbf{G}n\mathbf{k}} e^{i\mathbf{G}\mathbf{r}} \qquad \qquad \psi_{n\mathbf{k}}(\mathbf{r}) = \frac{1}{\Omega^{1/2}} \sum_{\mathbf{G}} C_{\mathbf{G}n\mathbf{k}} e^{i(\mathbf{G}+\mathbf{k})\mathbf{r}}$$
$$\rho(\mathbf{r}) = \sum_{\mathbf{G}} \rho_{\mathbf{G}} e^{i\mathbf{G}\mathbf{r}} \qquad \qquad V(\mathbf{r}) = \sum_{\mathbf{G}} V_{\mathbf{G}} e^{i\mathbf{G}\mathbf{r}}$$

The basis set includes all plane waves for which

$$\frac{1}{2}|\mathbf{G} + \mathbf{k}|^2 < E_{\text{cutoff}}$$

Transformation by means of FFT between "real" space and "reciprocal" space:

$$C_{\mathbf{r}n\mathbf{k}} = \sum_{\mathbf{G}} C_{\mathbf{G}n\mathbf{k}} e^{i\mathbf{G}\mathbf{r}} \quad \stackrel{\text{FFT}}{\longleftrightarrow} \quad C_{\mathbf{G}n\mathbf{k}} = \frac{1}{N_{\text{FFT}}} \sum_{\mathbf{r}} C_{\mathbf{r}n\mathbf{k}} e^{-i\mathbf{G}\mathbf{r}}$$

The charge density

The Self-Consistency-Cycle (cont.)

Two sub-problems:

- Optimization of $\{\psi_n\}$ Iterative Diagonalization *e.g.* RMM-DIIS or Blocked Davidson
- Construction of *ρ*_{in}
 Density Mixing
 e.g. Broyden mixer

The self-Consistency-Cycle

A naïve algorithm: express the Hamilton matrix in a plane wave basis and diagonalize it:

$$\mathbf{H} = \langle \mathbf{G} | \hat{H}[\rho] | \mathbf{G}' \rangle \rightarrow \text{diagonalize } \mathbf{H} \rightarrow \{ \psi_i, \epsilon_i \} \ i = 1, .., N_{\text{FFT}}$$

Self-consistency-cycle:

$$\rho_0 \to \mathbf{H}_0 \to \rho' \to \rho_1 = f(\rho_0, \rho') \to \mathbf{H}_1 \to \dots$$

Iterate until: $\rho = \rho'$

BUT: we do not need N_{FFT} eigenvectors of the Hamiltonian (at a cost of $O(N_{FFT}^3)$). Actually we only the N_b lowest eigenstates of **H**, where N_b is of the order of the number of electrons per unit cell ($N_b << N_{FFT}$).

Solution: use iterative matrix diagonalization techniques to find the N_b lowest Eigenvector of the Hamiltonian: RMM-DIIS, blocked-Davidson, etc.

Key ingredients: Subspace diagonalization and the Residual

• Rayleigh-Ritz: diagonalization of the N_b x N_b subspace

 $\sum_{m} \bar{H}_{nm} B_{mk} = \sum_{m} \epsilon_k^{\text{app}} \bar{S}_{nm} B_{mk}$

with

$$\bar{H}_{nm} = \langle \psi_n | \hat{H} | \psi_m \rangle \qquad \qquad \bar{S}_{nm} = \langle \psi_n | \hat{S} | \psi_m \rangle$$

yields N_b eigenvectors $|\bar{\psi}_k\rangle = \sum_m B_{mk} |\psi_m\rangle$ with eigenvalues ϵ_{app} .

These eigenstates are the best approximation to the exact N_b lowest eigenstates of **H** within the subspace spanned by the current orbitals.

• The Residual:

$$|R(\psi_n)\rangle = (\hat{H} - \epsilon_{\rm app}\hat{S})|\psi_n\rangle \qquad \epsilon_{\rm app} = \frac{\langle\psi_n|H|\psi_n\rangle}{\langle\psi_n|\hat{S}|\psi_n\rangle}$$

(its norm is measure for the error in the eigenvector)

Blocked-Davidson

- Take a subset of all bands: $\{\psi_n | n = 1, .., N\} \Rightarrow \{\psi_k^1 | k = 1, .., n_1\}$
 - Extend this subset by adding the (preconditioned) residual vectors to the presently considered subspace:

$$\{\psi_k^1/g_k^1 = \mathbf{K}(\mathbf{H} - \epsilon_{\mathrm{app}}\mathbf{S})\psi_k^1 | k = 1, .., n_1\}$$

 Rayleigh-Ritz optimization ("sub-space rotation") in the 2n₁ dimensional subspace to determine the n₁ lowest eigenvectors:

diag
$$\{\psi_k^1/g_k^1\} \longrightarrow \{\psi_k^2|k=1,..,n_1\}$$

• Extend subspace with the residuals of $\{\psi_k^2\}$

$$\{\psi_k^1/g_k^1/g_k^2 = \mathbf{K}(\mathbf{H} - \epsilon_{\mathrm{app}}\mathbf{S})\psi_k^2|k = 1, .., n_1\}$$

- Rayleigh-Ritz optimization $\Rightarrow \{\psi_k^3 | k = 1, ..., n_1\}$
- Etc ...
- The optimized set replaces the original subset:

 $\{\psi_k^m | k = 1, ..., n_1\} \longrightarrow \{\psi_n | n = 1, ..., n_1\}$

• Continue with next subset: $\{\psi_k^1|k=n_1+1,..,n_2\}$, etc, ...

After treating all bands: Rayleigh-Ritz optimization of $\{\psi_n | n = 1, .., N\}$

The action of the Hamiltonian

The action $\mathbf{H}|\psi_{n\mathbf{k}}
angle$

$$\left(-\frac{1}{2}\Delta + V(\mathbf{r})\right)\psi_{n\mathbf{k}}(\mathbf{r})$$

Using the convention

$$\langle \mathbf{r} | \mathbf{G} + \mathbf{k} \rangle = \frac{1}{\Omega^{1/2}} e^{i(\mathbf{G} + \mathbf{k})\mathbf{r}} \rightarrow \langle \mathbf{G} + \mathbf{k} | \psi_{n\mathbf{k}} \rangle = C_{\mathbf{G}n\mathbf{k}}$$

• Kinetic energy:

$$\langle \mathbf{G} + \mathbf{k} | -\frac{1}{2} \Delta | \psi_{n\mathbf{k}} \rangle = \frac{1}{2} |\mathbf{G} + \mathbf{k}|^2 C_{\mathbf{G}n\mathbf{k}} \qquad N_{\mathrm{NPLW}}$$

- Local potential: $V = V_{\rm H}[\rho] + V_{xc}[\rho] + V_{\rm ext}$
 - Exchange-correlation: easily obtained in real space $V_{\rm xc,r} = V_{\rm xc}[\rho_r]$
 - FFT to reciprocal space $\{V_{xc,r}\} \rightarrow \{V_{xc,G}\}$
 - Hartree potential: solve Poisson eq. in reciprocal space $V_{\rm H,G} = \frac{4\pi}{|\mathbf{G}|^2} \rho_{\mathbf{G}}$
 - Add all contributions $V_{\mathbf{G}} = V_{\mathrm{H},\mathbf{G}} + V_{\mathrm{xc},\mathbf{G}} + V_{\mathrm{ext},\mathbf{G}}$
 - FFT to real space $\{V_{\mathbf{G}}\} \rightarrow \{V_{\mathbf{r}}\}$

The action

$$\langle \mathbf{G} + \mathbf{k} | V | \psi_{n\mathbf{k}} \rangle = \frac{1}{N_{\text{FFT}}} \sum_{\mathbf{r}} V_{\mathbf{r}} C_{\mathbf{r}n\mathbf{k}} e^{-i\mathbf{Gr}} \qquad N_{\text{FFT}} \log N_{\text{FFT}}$$

Solving the KS equations

$$\left(-\frac{1}{2}\Delta + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r})\right)\psi_{n\mathbf{k}}(\mathbf{r}) = \epsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r})$$

- FFTs extensively used to evaluate $~ {f H} | \psi_n
 angle$
- We actually use a mixed basis set (Projector-Augmented-Waves):

$$|\psi_n\rangle = |\widetilde{\psi}_n\rangle + \sum_i (|\phi_i\rangle - |\widetilde{\phi}_i\rangle) \langle \widetilde{p}_i |\widetilde{\psi}_n\rangle$$

which involves projection of the pseudo-wave functions on local projection operators (DGEMM).

- One needs to keep the solutions (bands) at each k-point orthonormal: essentially done by a Choleski decomposition (LU) of the overlap matrix, followed by an inversion of U (LAPACK/scaLAPACK) and a transformation between the wave function (ZGEMM).
- Diagonalization of the Hamiltonian in the subspace of the current wave functions (LAPACK/scaLAPACK or ELPA), followed by a unitary transformation between the wave function (ZGEMM).

A typical workload

• Action: $H|\tilde{\psi}_n
angle$

$\mathrm{FFT}(ilde{\psi}_n)$	$N\ln N \ orall \ n$	$N^2 \ln N$	fftw
$V({f r}) ilde{\psi}_{f n}({f r})$	$N \forall n$	N^2	
$\langle ilde{p}_i ilde{\psi}_n angle$	$\begin{array}{l} N \\ \text{const.} \end{array} \forall \ i, n \end{array}$	N^3 N^2 (real sp.) LREAL= A	BLAS3 (DGEMM)

• Subspace rotation:

$H_{nm} = \langle \tilde{\psi}_n H \tilde{\psi}_m \rangle$	$\forall n,m N^3$	BLAS3 (ZGEMM)
$\operatorname{diag}(H)$	N^3	(sca)LAPACK
$ ilde{\psi}_{n}^{'} angle = \sum_{m} U_{nm} ilde{\psi}_{m} angle$	$\forall n N^3$	BLAS3 (ZGEMM)

Scaling with system size (N)

running on 8 Intel X5550 quadcore procs. (total: 32 x 2.66 GHz cores)

2 MPI-ranks, NCORE=1

Distribute work and data "over-orbitals"

- Default
- NCORE = 1 (or equivalently: NPAR = #-of-MPI-ranks)
- KPAR = 1

The Kohn-Sham equation:

$$\left(-\frac{1}{2}\Delta + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r})\right)\psi_{n\mathbf{k}}(\mathbf{r}) = \epsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r})$$

• Orbital index *n*

2 MPI-ranks, NCORE=1

Distribute work and data "over-orbitals"Default

- NCORE = 1

 (or equivalently: NPAR = #-of-MPI-ranks)
- KPAR = 1

2 MPI-ranks, NCORE=2

Distribution work and data "over-plane-waves"

- NCORE = #-of-MPI-ranks (or equivalently: NPAR = 1)
- KPAR = 1

2 MPI-ranks, NCORE=1

2 MPI-ranks, NCORE=2

Combinations of "over-orbitals" and "over-plane-wave" distributions are allowed as well

Additionally work may be distributed "over-k-points"

- KPAR = n (n>1)
- *m* = (#-of-MPI-ranks / *n*) must be an integer
- Work is distributed in a round-robin fashion over groups of *m* MPI-ranks
- Data is duplicated!

$$\left(-\frac{1}{2}\Delta + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r})\right)\psi_{n\mathbf{k}}(\mathbf{r}) = \epsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r})$$

• Orbital index *n*, k-point index **k**

8 MPI-ranks, KPAR=2, NCORE=2

All-2-All communication

 $C_{nm} = \langle \Psi_{mk} | H | \Psi_{nk} \rangle$

Each MPI-rank contracts over its subset of G-vector followed by a global sum of $\rm C_{nm}$ over all MPI-ranks

Parallel FFT: Ball-2-Cube

In-house parallel Ball-2-Cube FFT:

- Less 1D-FFTs (reduction: $\approx 1.76 \times$)
- BUT: communication from (B) \rightarrow (C) and (C) \rightarrow (D)
- For small to medium sized FFT grids a highly optimized 3D-FFT (e.g. from Intel's mkl) is equally fast

Hardware considerations

Typical configuration:

- *N* interconnected nodes
- 2 packages/node
- *M* cores/package

Distribution "over-plane-waves": MPI-ranks that share an orbital should reside on the same node (better even on the same package).

- NCORE = $n \le 2M$
- (2*M* / *n*) should be an integer
- Typically: n = M or n = M/2

Distribution "over-**k**-points":

- KPAR = $n \leq$ #-of-k-points (NKPTS)
- (#-of-MPI-ranks / n) should be an integer
- If memory allows: KPAR = NKPTS

Default placement of MPI-ranks on the nodes/packages/cores depends on the particulars of the MPI implementation and its configuration!

- 2 interconnected nodes
- 2 packages/node
- 4 cores/package

Default placement of MPI-ranks on the nodes/packages/cores depends on the particulars of the MPI implementation and its configuration!

- 2 interconnected nodes
- 2 packages/node
- 4 cores/package

Good: Place subsequent MPI-ranks close together, i.e., first on subsequent cores of the same package, then moving on the second package of the same node, before starting to fill the next node.

- 2 interconnected nodes
- 2 packages/node
- 4 cores/package

Bad: Distribute subsequent MPI-ranks in a round-robin fashion over the packages.

- 2 interconnected nodes
- 2 packages/node
- 4 cores/package

Worse: Distribute subsequent MPI-ranks in a round-robin fashion over the nodes.

NCORE, KPAR, and the #-of-MPI-ranks

- *N* interconnected nodes
- 2 packages/node
- *M* cores/package
- 2*NM* MPI-ranks

Distribution "over-plane-waves": MPI-ranks that share an orbital should reside on the same node (better even on the same package).

- NCORE = $n \le 2M$
- (2*M* / *n*) should be an integer
- Typically: n = M or n = M/2

Distribution "over-k-points":

- KPAR = $n \leq$ #-of-k-points (NKPTS)
- (#-of-MPI-ranks / n) should be an integer
- If memory allows: KPAR = NKPTS

Distribution "over-orbitals":

- The number of orbitals (NBANDS) is such that NBANDS / (2NM / NCORE / KPAR) is an integer number
- ⇒ Increasing #-of-MPI-ranks may lead to an unnecessarily large NBANDS (*i.e.*, adding "empty" orbitals)
- Some algorithms converge faster when each MPI rank owns (part of) a few orbitals (*e.g.* blocked-Davidson)
- Generally speaking: having lots of MPI ranks and very little work/data per rank is never a good idea since (all-2-all) communication becomes unreasonably expensive.

Strong/Weak scaling (Si_N)

Scaling under MPI (on a Cray XC-40)

• PBE

Courtesy of P. Saxe, Materials Design Inc. (and Cray).

Scaling under MPI (on a Cray XC-40)

Courtesy of P. Saxe, Materials Design Inc. (and Cray).

Large systems

• Use real-space PAW projectors (instead of reciprocal space projectors)

$$\langle \tilde{p}_i | \tilde{\psi}_n \rangle$$
 N $\forall i, n$ N^3
const. $\forall i, n$ N^2 (real sp.) BLAS3 (DGEMM)
LREAL= A

• If you can limit **k**-point sampling to the Gamma ($\Gamma \equiv \mathbf{k} = \mathbf{0}$) point: use the "gamma-only" version of VASP

In the "gamma-only" version of VASP the orbitals are stored as real quantities in real-space:

- real-2-complex FFTs
- DGEMMs instead of ZGEMMs

Compilation

- Fast FFTs: the FFTs from Intel's mkl-library seem to be unbeatably fast ...
- scaLAPACK for large systems
- A compiler that effectively generates AVX2 instructions and libraries (*e.g.* BLAS) that are optimized for AVX2 (up to 20% performance gain)

The End

Thank you!