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The	Many-Body	Schrödinger	equation

Ĥ (r1, ..., rN ) = E (r1, ..., rN )
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A (r1, ..., rN ) = E (r1, ..., rN )

 (r1, ..., rN ) ! { 1(r), 2(r), ..., N (r)}

For	instance,	many-body	WF	storage	demands	are	prohibitive:

A	solution:	map	onto	“one-electron”	theory:

5	electrons	on	a	10×10×10	grid	~	10	PetaBytes !

 (r1, ..., rN ) (#grid points)N



Hohenberg-Kohn-Sham	DFT

E[⇢] = Ts[{ i[⇢]}] + EH [⇢] + Exc[⇢] + EZ [⇢] + U [Z]
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 (r1, ..., rN ) ! { 1(r), 2(r), ..., N (r)}

Map	onto	“one-electron”	theory:

Total	energy	is	a	functional	of	the	density:

The	density	is	computed	using	the	one-electron	orbitals:

The	one-electron	orbitals	are	the	solutions	of	the	Kohn-Sham	equation:

BUT:
Exc[⇢] =??? Vxc[⇢](r) =???



Exchange-Correlation

Exc[⇢] =??? Vxc[⇢](r) =???

• Exchange-Correlation	functionals are	modeled	on	the	uniform-electron-gas	(UEG):	
The	correlation	energy	(and	potential)	has	been	calculated	by	means	of	Monte-
Carlo	methods	for	a	wide	range	of	densities,	and	has	been	parametrized to	yield	a	
density	functional.

• LDA:	we	simply	pretend	that	an	inhomogeneous	electronic	density	locally	behaves	
like	a	homogeneous	electron	gas.

• Many,	many,	many	different	functionals available:
LDA,	GGA,	meta-GGA,	van-der-Waals	functionals,	etc etc



An	N-electron	system:	N	=	O(1023)

N ⇥ (#grid points)(#grid points)N

 (r1, ..., rN ) ! { 1(r), 2(r), ..., N (r)}

Hohenberg-Kohn-Sham	DFT	takes	us	a	long	way:

Nice	for	atoms	and	molecules,	but	in	a	realistic	piece	of	solid	state	material	N=	O(1023)!



Translational	invariance:
Periodic	Boundary	Conditions

 nk(r+R) =  nk(r)e
ikR

 nk(r) = unk(r)e
ikr

unk(r+R) = unk(r)

Translational	invariance	implies:

and

All	states	are	labeled	by	Bloch	vector k and	the	band	index n:

• The	Bloch	vector	k is	usually	constrained	to	lie	within	the	first	Brillouin zone
of	the	reciprocal	space	lattice.

• The	band	index	n	is	of	the	order	if	the	number	of	electrons	per	unit	cell.



Reciprocal	space	&	the	first	Brillouin zone
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Sampling	the	1st BZ
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The	evaluation	of	many	key	quantities	involves	an	integral	over	the	1st BZ.
For	instance	the	charge	density:

We	exploit	the	fact	that	the	orbitals	at	Bloch	vectors	k that	are	close	together	are
almost	identical	and	approximate	the	integral	over	the	1st BZ	by	a	weighted	sum
over	a	discrete	set	of	k-points:

Fazit:	the	intractable	task	of	determining																									with	N=1023,	has	been
reduced	to	calculating														at	a	discrete	set	of	k-points	in	the	1st BZ,	for	a
number	of	bands	that	is	of	the	order	if	the	number	of	electrons	in	the	unit	cell.

 (r1, ..., rN )
 nk(r)



E[⇢, {R, Z}] = Ts[{ nk[⇢]}] + EH [⇢, {R, Z}] + Exc[⇢] + U({R, Z})
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The	total	energy

The	kinetic	energy

The	Hartree energy

where

The	Kohn-Sham	equations

The	Hartree potential



A	plane	wave	basis	set
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All	cell-periodic	functions	are	expanded	in	plane	waves	(Fourier	analysis):

The	basis	set	includes	all	plane	waves	for	which
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Transformation	by	means	of	FFT	between	“real”	space	and	“reciprocal”	space:
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The	charge	density
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The	Self-Consistency-Cycle	(cont.)

Two	sub-problems:

• Optimization	of
Iterative	Diagonalization
e.g. RMM-DIIS	or
Blocked	Davidson

• Construction	of
Density	Mixing
e.g. Broyden mixer

{ n}

⇢in



The	self-Consistency-Cycle

H = hG|Ĥ[⇢]|G0i ! diagonalize H ! { i, ✏i} i = 1, .., NFFT

⇢0 ! H0 ! ⇢0 ! ⇢1 = f(⇢0, ⇢
0) ! H1 ! ...

⇢ = ⇢0

A	naïve	algorithm:	express	the	Hamilton	matrix	in	a	plane	wave	basis	and
diagonalize it:

Self-consistency-cycle:

Iterate	until:

BUT: we	do	not	need	NFFT eigenvectors	of	the	Hamiltonian	(at	a	cost	of	O(NFFT
3)).

Actually	we	only	the	Nb lowest	eigenstates of	H,	where	Nb is	of	the	order
of	the	number	of	electrons	per	unit	cell	(Nb <<	NFFT).

Solution:	use	iterative	matrix	diagonalization techniques	to	find	the	Nb lowest
Eigenvector	of	the	Hamiltonian:	RMM-DIIS,	blocked-Davidson,	etc.	



Key	ingredients:	Subspace	diagonalization
and	the	Residual	
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• Rayleigh-Ritz:	diagonalization of	the	Nb x	Nb subspace

with

yields	Nb eigenvectors																																					with	eigenvalues	εapp.

These	eigenstates are	the	best	approximation	to	the	exact	Nb lowest
eigenstates of	H within	the	subspace	spanned	by	the	current	orbitals.

• The	Residual:

✏app =
h n|Ĥ| ni
h n|Ŝ| ni

(its	norm	is	measure	for	the	error	in	the	eigenvector)



Blocked-Davidson
• Take	a	subset	of	all	bands: { n|n = 1, .., N} ) { 1

k|k = 1, .., n1}

{ 1
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k|k = 1, .., n1}

{ 2
k|k = 1, .., n1}

• Extend	this	subset	by	adding	the	(preconditioned)	residual	vectors
to	the	presently	considered	subspace:

• Rayleigh-Ritz	optimization	(“sub-space	rotation”)	in	the	2n1 dimensional
subspace	to	determine	the	n1 lowest	eigenvectors:

diag{ 1
k/g

1
k}

• Extend	subspace	with	the	residuals	of	 { 2
k}

{ 1
k/g
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k = K(H� ✏appS) 

2
k|k = 1, .., n1}

• Rayleigh-Ritz	optimization		 ) { 3
k|k = 1, .., n1}

• Etc …

{ m
k |k = 1, .., n1} { n|n = 1, .., n1}

• The	optimized	set	replaces	the	original	subset:		

• Continue	with	next	subset:																																										,	etc,	…{ 1
k|k = n1 + 1, .., n2}

After	treating	all	bands:	Rayleigh-Ritz	optimization	of { n|n = 1, .., N}



The	action	of	the	Hamiltonian
H| nki ✓

�1

2
�+ V (r)

◆
 nk(r)

hr|G+ ki = 1

⌦1/2
ei(G+k)r �! hG+ k| nki = CGnk

NNPLWhG+ k|� 1

2
�| nki =

1

2
|G+ k|2CGnk

hG+ k|V | nki =
1

NFFT

X

r

VrCrnke
�iGr NFFT logNFFT

The	action

Using	the	convention

• Kinetic	energy:

• Local	potential:
• Exchange-correlation:	easily	obtained	in	real	space
• FFT	to	reciprocal	space
• Hartree potential:	solve	Poisson	eq.	in	reciprocal	space
• Add	all	contributions
• FFT	to	real	space
The	action

V = VH[⇢] + Vxc[⇢] + Vext

Vxc,r = Vxc[⇢r]

VH,G =
4⇡

|G|2 ⇢G
VG = VH,G + Vxc,G + Vext,G

{VG} �! {Vr}

{Vxc,r} �! {Vxc,G}



Solving	the	KS	equations

• FFTs	extensively	used	to	evaluate

• We	actually	use	a	mixed	basis	set	(Projector-Augmented-Waves):

which	involves	projection	of	the	pseudo-wave	functions	on	local	projection	
operators	(DGEMM).

• One	needs	to	keep	the	solutions	(bands)	at	each	k-point	orthonormal:
essentially	done	by	a	Choleski decomposition	(LU)	of	the	overlap	matrix,	followed	by	
an	inversion	of	U	(LAPACK/scaLAPACK)	and	a	transformation	between	the	wave	
function	(ZGEMM).

• Diagonalization	of	the	Hamiltonian	in	the	subspace	of	the	current	wave	functions	
(LAPACK/scaLAPACK or	ELPA),	followed	by	a	unitary	transformation	between	the	
wave	function	(ZGEMM).

⇣
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A	typical	workload
H| ̃ni• Action:
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const. N2 (real	sp.) BLAS3		(DGEMM)

• Subspace	rotation:

Hnm = h ̃n|H| ̃mi 8 n,m N3 BLAS3		(ZGEMM)

diag(H) N3 (sca)LAPACK
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LREAL=	A



Scaling	with	system	size	(N)

Self-Consistency	Cycle	(SCC):	RMM-DIIS
running	on	8	Intel	X5550	quadcore procs.	(total:	32	x	2.66	GHz	cores)	



Distribution	of	work	and	data

Distribute	work	and	data	“over-orbitals”
• Default
• NCORE	=	1

(or	equivalently:	NPAR	=	#-of-MPI-ranks)
• KPAR	=	1

⇣
�1

2
�+ Vext(r) + VH(r) + Vxc(r)

⌘
 nk(r) = ✏nk nk(r)

The	Kohn-Sham	equation:

• Orbital	index	n



Distribution	of	work	and	data

Distribute	work	and	data	“over-orbitals”
• Default
• NCORE	=	1

(or	equivalently:	NPAR	=	#-of-MPI-ranks)
• KPAR	=	1

Distribution	work	and	data	“over-plane-waves”
• NCORE	=	#-of-MPI-ranks

(or	equivalently:	NPAR	=	1)
• KPAR	=	1



Distribution	of	work	and	data

Combinations	of	”over-orbitals”	and
”over-plane-wave”	distributions	are
allowed	as	well



Distribution	of	work	and	data
Additionally	work	may	be	distributed	”over-k-points”
• KPAR	=	n (n>1)
• m =	(#-of-MPI-ranks	/	n)		must	be	an	integer
• Work	is	distributed	in	a	round-robin	fashion	over	groups	of	mMPI-ranks
• Data	is	duplicated!

⇣
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2
�+ Vext(r) + VH(r) + Vxc(r)

⌘
 nk(r) = ✏nk nk(r)

• Orbital	index	n,	k-point	index	k



All-2-All	communication



Parallel	FFT:	Ball-2-Cube
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In-house	parallel	Ball-2-Cube	FFT:
• Less	1D-FFTs	(reduction:	≈ 1.76 ×)
• BUT:	communication	from	(B)	→	(C)	and	(C)	→	(D)
• For	small	to	medium	sized	FFT	grids	a	highly	optimized	3D-FFT

(e.g.	from	Intel’s	mkl)	is	equally	fast



Hardware
considerations
Typical	configuration:

• N interconnected	nodes
• 2	packages/node
• M cores/package

Distribution	“over-plane-waves”:
MPI-ranks	that	share	an	orbital
should	reside	on	the	same	node
(better	even	on	the	same	package).

• NCORE	=	n ≤ 2M
• (2M	/ n)	should	be	an	integer
• Typically:	n =	M or	n =	M/2

Distribution	“over-k-points”:
• KPAR	=	n ≤ #-of-k-points	(NKPTS)
• (#-of-MPI-ranks / n)	should	be	an	integer
• If	memory	allows:	KPAR	=	NKPTS

Default	placement	of	MPI-ranks	on	the	
nodes/packages/cores	depends	on	the	
particulars	of	the	MPI	implementation	and	
its	configuration!



For	instance:
• 2 interconnected	nodes
• 2	packages/node
• 4	cores/package

Default	placement	of	MPI-ranks	on	the	
nodes/packages/cores	depends	on	the	
particulars	of	the	MPI	implementation	and	
its	configuration!



For	instance:
• 2 interconnected	nodes
• 2	packages/node
• 4	cores/package

Good:	Place	subsequent	MPI-ranks	close	
together,	i.e.,	first	on	subsequent	cores	of	
the	same	package,	then	moving	on	the	
second	package	of	the	same	node,	before	
starting	to	fill	the	next	node.



For	instance:
• 2 interconnected	nodes
• 2	packages/node
• 4	cores/package

Bad:	Distribute	subsequent	MPI-ranks	in	a	
round-robin	fashion	over	the	packages.



For	instance:
• 2 interconnected	nodes
• 2	packages/node
• 4	cores/package

Worse:	Distribute	subsequent	MPI-ranks	in	a	
round-robin	fashion	over	the	nodes.



• N interconnected	nodes
• 2	packages/node
• M cores/package
• 2NMMPI-ranks

Distribution	“over-plane-waves”:
MPI-ranks	that	share	an	orbital
should	reside	on	the	same	node
(better	even	on	the	same	package).

• NCORE	=	n ≤ 2M
• (2M	/ n)	should	be	an	integer
• Typically:	n =	M or	n =	M/2

Distribution	“over-k-points”:
• KPAR	=	n ≤ #-of-k-points	(NKPTS)
• (#-of-MPI-ranks / n)	should	be	an	integer
• If	memory	allows:	KPAR	=	NKPTS

Distribution	“over-orbitals”:
• The	number	of	orbitals	(NBANDS)	is	such

that	NBANDS	/	(2NM /	NCORE	/	KPAR)
is	an	integer	number

⇒ Increasing	#-of-MPI-ranks	may	lead	to	an
unnecessarily	large	NBANDS	(i.e.,	adding
“empty”	orbitals)

• Some	algorithms	converge	faster	when
each	MPI	rank	owns	(part	of)	a	few
orbitals	(e.g. blocked-Davidson)

• Generally	speaking:	having	lots	of	MPI
ranks	and	very	little	work/data	per	rank
is	never	a	good	idea	since	(all-2-all)
communication	becomes	unreasonably
expensive.

NCORE,	KPAR,	and	the	#-of-MPI-ranks



Strong/Weak	scaling	(SiN)



Scaling	under	MPI	(on	a	Cray	XC-40)

Courtesy	of	P.	Saxe,	Materials	Design	Inc.	(and	Cray).	

• 5713	e-
• 2	k-points
• RMM-DIIS
• PBE
• KPAR=2



Scaling	under	MPI	(on	a	Cray	XC-40)

• 864	e-
• 8	k-points
• HSE06
• Davidson
• KPAR=8

Courtesy	of	P.	Saxe,	Materials	Design	Inc.	(and	Cray).	



Large	systems

hp̃i| ̃ni N 8 i, n
N3

const. N2 (real	sp.) BLAS3		(DGEMM)
LREAL=	A

• Use	real-space	PAW	projectors	(instead	of	reciprocal	space	projectors)

• If	you	can	limit	k-point	sampling	to	the	Gamma	(𝚪 ≡ 𝐤 = 𝟎)	point:
use	the	“gamma-only”	version	of	VASP

In	the	”gamma-only”	version	of	VASP	the	orbitals	are	stored	as	real	quantities
in	real-space:
• real-2-complex	FFTs
• DGEMMs	instead	of	ZGEMMs



Compilation

• Fast	FFTs:	the	FFTs	from	Intel’s	mkl-library	seem	to	be	unbeatably	fast	…
• scaLAPACK for	large	systems
• A	compiler	that	effectively	generates	AVX2	instructions	and	libraries	(e.g. BLAS)

that	are	optimized	for	AVX2	(up	to	20%	performance	gain)



The	End

Thank	you!


