

Basics III: Ionic Relaxation, Stress & Cell Shapes, Phonons and Molecular Dynamics

Doris Vogtenhuber

Rennes, 1. September 2016

Faculty of Physics, AG-CMP, University of Vienna

Introduction Algorithms used in VASP INCAR parameters in VASP, Problen

Outline

- Ionic Relaxation
 - Introduction
 - Algorithms used in VASP
 - INCAR parameters in VASP, Problem Handling
- 2 Lattice Relaxation
 - Cell Volume Optimization
 - INCAR parameters in VASP
- 3 Phonons
 - Introduction
 - INCAR Parameters, Problem Handling
- 4 Molecular Dynamics
 - Introduction
 - MD Algorithms implemented in VASP
 - Thermostats implemented in VASP

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Introduction

Basic Considerations

• Hermiticity of $\hat{H} \longrightarrow$ forces on the atoms can be calculated via the Hellmann-Feynman theorem

$$\nabla_I \epsilon_0(\vec{R}) = \frac{\partial}{\partial \vec{R}_I} \langle \Psi_0 \mid H_e(\vec{R}) \mid \Psi_0 \rangle = \langle \Psi_0(\vec{R}) \mid \nabla_I H_e(\vec{R}) \mid \Psi_0(\vec{R}) \rangle$$

- Forces acting on the ions are given by the expectation value of the gradient of the electronic Hamiltonian in the ground-state
- atomic coordinates in a cell with fixed cell shape: Hellmann-Feynman forces
- geometry of the unit cell (volume, shape): Hellmann-Feynman stresses

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Introduction

... Basic Considerations

- in equilibrium: $E(\vec{R}, V, \text{cellshape...}) = \min$.
- (1): find the atoms' positions \vec{R} minimizing E
- \Rightarrow search for the (local) minimum of $E(\vec{R}) = f(\vec{x})$ with, f expanded around equilibrium \vec{x}^0

$$f(\vec{x}) \approx a + \vec{b}\vec{x} + \frac{1}{2}\vec{x}\mathbf{B}\vec{x} = \bar{a} + \frac{1}{2}(\vec{x} - \vec{x}^0)\mathbf{B}(\vec{x} - \vec{x}^0)$$
$$\mathbf{B} = \mathbf{B}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j} \quad \text{Hessian matrix}$$

- at a stationary point the gradient of $f(\vec{g}_i(\vec{x}))$ vanishes: $\vec{g}_i(\vec{x}) = \frac{\partial f}{\partial x_i} = \sum_j \mathbf{B}_{ij}(\vec{x}_j - \vec{x}_j^0) = 0$
- at a minimum: **B**: has to be positive definite

Introduction Algorithms used in VASP INCAR parameters in VASP, Proble

Introduction

.. Basic Considerations: Newton Algorithm

- **1** start with an arbitrary point \vec{x}^1
- **2** calculate the gradient of f at \vec{x}^1 : $g(\vec{x}^1) = \frac{\partial f}{\partial \vec{x}} = \mathbf{B}(\vec{x}^1 - \vec{x}^0)$
- perform a step $\longrightarrow \vec{x}^2 = \vec{x}^1 - \mathbf{B}^{-1}\vec{g}(\vec{x}^1)$
 - in practice: **B** is approximated by the largest eigenvalue of the Hessian matrix, $\Gamma_{\rm max}(B)$
 - steepest descent algorithm

Introduction Algorithms used in VASP INCAR parameters in VASP, Prob

Introduction

Steepest Descent Algorithm

- guess \vec{x}^1
- 2 calculate $\vec{g}(\vec{x}^1)$
- step along the steepest descent direction $\vec{x}^2 = \vec{x}^1 - \frac{1}{\Gamma_{\text{max}}} \vec{g}(\vec{x}^1)$
- repeat $2+3 \longrightarrow$ converged geometry

Introduction Algorithms used in VASP INCAR parameters in VASP, Proble

Introduction

Convergence of the Steepest Descent Algorithm

- minimize the number of steps requested to reach the afforded accuracy in the ion positions: step-widths along g(x¹)
- Eigenvalues of **B**: vibrational modes of the system
 - $\bullet~\Gamma_{\rm max}:$ "hardest mode" maximum stable step width
 - $\bullet~\Gamma_{\min}:$ "softest mode" slowest convergence
- use preconditioning of **B** to speed up convergence

Introduction Algorithms used in VASP INCAR parameters in VASP, Problen

Algorithms used in VASP

Overview

- aims:
 - reach asymptotic convergence rates
 - 2 maintain the relaxation history
- Quasi-Newton Schemes (DIIS): direct inversion in the iterative subspace
- Conjugate Gradient (GC): search directions are conjugated to the previous seach directions
- Damped Molecular Dynamics (MD): minimization problem is cast into a simulated annealing approach

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Algorithms used in VASP

The Quasi-Newton Algorithm

- simple Quasi-Newton Scheme: for a set of points \vec{x}^i and gradients \vec{g}^i (i = 1, ..., N)
- find a linear combination of \vec{x}^i which minimizes \vec{g}^i
- constraint: $\sum_i \alpha_i = 1$:

$$\vec{g}^{i}(\sum_{i} \alpha^{i} \vec{x}^{i}) = \mathbf{B}(\sum_{i} \alpha^{i} \vec{x}^{i} - \vec{x}^{0})$$
$$= \mathbf{B}(\sum_{i} \alpha^{i} \vec{x}^{i} - \sum_{i} \alpha^{i} \vec{x}^{0})$$
$$= \sum_{i} \alpha^{i} \mathbf{B}(\vec{x}^{i} - \vec{x}^{0}) = \sum_{i} \alpha^{i} \vec{g}^{i}$$

• gradient: linear in its arguments

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Algorithms used in VASP

The Full DIIS Algorithm

- start with a single initial point \vec{x}^i
- **2** steepest descent step along gradient $\vec{g}(\vec{x}^1)$: $\vec{x}^2 = \vec{x}^1 \lambda \vec{g}^1$
- Search for the minimal gradient in the subspace spanned by $\vec{g}^i : → \vec{g}_{opt} = \sum_i \alpha^i \vec{g}^i$
- **6** calculate the corresponding position $\vec{x}_{opt} = \sum_{i} \alpha^{i} \vec{x}^{i}$

Introduction Algorithms used in VASP INCAR parameters in VASP, Probler

Algorithms used in VASP

full DIIS

- start with single initial point x^0
- steepest descent step (sds)
- opt. position \vec{x}_{opt}^1
- sds from \vec{x}_{opt}^1 along $\vec{g}_{\mathrm{opt}} \longrightarrow \vec{x}^2$
- $\longrightarrow \vec{g}(\vec{x}^2)$
- linearity \longrightarrow gradient is known in 2D
- minimize f exactly

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Algorithms used in VASP

The Conjugate-Gradient Algorithm (CG)

- search directions: conjugated to the previous seach directions
- start with \vec{x}^0
 - steepest descent step along gradient with line minimization
 - 2 gradient at the current position $\vec{g}(\vec{x}^N)$
 - So conjugate $\vec{g}(\vec{x}^N)$ to the previous search direction:

$$\vec{s}(\vec{x}^N) = \vec{g}(\vec{x}^N) + \gamma \vec{g}(\vec{x}^{N-1}), \quad \gamma = \frac{(\vec{g}(\vec{x}^N) - \vec{g}(\vec{x}^{N-1})) \cdot \vec{g}(\vec{x}^N)}{\vec{g}(\vec{x}^{N-1}) \cdot \vec{g}(\vec{x}^{N-1})}$$

④ line minimization along \vec{s}^N

- **(**) if \vec{g} is not sufficiently small: continue with 1
- search directions are orthogonal (step 3): $\vec{s}^N \mathbf{B} \vec{s}^M \quad \forall N, M$
- CG finds the min. of a quadratic function with k DOF in k + 1 steps exactly.

Introduction Algorithms used in VASP INCAR parameters in VASP, Probler

Algorithms used in VASP

The CG Algorithm

- sds from \vec{x}^0 along \vec{g}^0
- trial step(s) ×, $N_{\rm X} \ge 1), \longrightarrow \vec{x}^1$
- \longrightarrow new $\vec{g}^1 = \vec{g}(\vec{x}^1)$
- conjugate $\vec{g}^1 : \longrightarrow, \vec{s}^1$
- \vec{s}^1 points directly towards the minimum
- minimization along \vec{s}^1

Introduction Algorithms used in VASP INCAR parameters in VASP, Problen

Algorithms used in VASP

Damped MD (MD)

- atoms' positions \vec{x} are regarded as dynamic degrees of freedom
- forces (=gradients) accelerate the motion of the atoms
- equation of motions of the atoms: $\ddot{\vec{x}} = -2\alpha \vec{F} \mu \dot{\vec{x}}$
- introduce an additional friction term μ
- integration of this eqation: simple velocity Verlet algorithm

$$\vec{v}_{N+1/2} = \left((1 - \mu/2) \vec{v}_{N-1/2} - 2\alpha \vec{F}_N \right) / (1 + \mu/2)$$

$$\vec{x}_{N+1} = \vec{x}_N + \vec{v}_{N+1/2}$$

Introduction Algorithms used in VASP INCAR parameters in VASP, Probler

Algorithms used in VASP

Damped MD (MD)

- "rolling ball" with friction (µ)
- μ too small: minimum overshot,
 back-acceleration
- μ too large: relaxation slows down

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

INCAR Parameters in VASP

Overview

Algorithm	main flag	additional flags	termination
DIIS	IBRION =1	POTIM, NFREE	EDIFFG
CG	IBRION =2	POTIM	EDIFFG
damped MD	IBRION =3	POTIM, SMASS	EDIFFG

• EDIFFG "convergence criterium":

- EDIFFG > 0: $|(E^N E^{N-1})| < \text{EDIFFG}$
- EDIFFG < 0: $|\vec{F}_i^N| < |$ EDIFFG $| \forall i = 1, N_{\text{ions}}$

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

INCAR Parameters in VASP

Parameter Usage by the Algorithms of VASP

• DIIS

- **POTIM** (=0.5) generally determines the step size (no line minimizations)
- NFREE # of ionic steps stored in the iteration history: for the set of points xⁱ and gradients gⁱ (i = 1,..., N)
 NFREE (=5) = max(N)

• CG

• **POTIM** (=0.5) : size of the *first trial step*, the subsequent line minimization is performed using Brent's algorithm

• damped MD: in $\vec{v}_{N+1/2} = \left((1-\mu/2)\vec{v}_{N-1/2} - 2\alpha\vec{F}_N\right)/(1+\mu/2)$

- POTIM $\approx \alpha$, good choices: 0.15 < POTIM $<\!0.4$
- SMASS (=0.4) $\approx \mu$, which should be $\approx 2\sqrt{\Gamma_{\rm min}/\Gamma_{\rm max}}$

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Choice of the most Appropriate Algorithm

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Problem Handling

(Some Other) Reasons for Bad Convergence

- unreasonable starting geometry (POSCAR)
 - lattice parameters, atomic positions
 - check OUTCAR for interatomic distances, forces of the input geometry, external pressure, (if $\mathtt{ISIF}>0)$
- sub-optimal settings of (some) INCAR parameters
 - $\bullet\,$ bad electronic convergence of (one of) the ionic steps $\longrightarrow\,$ wrong forces
 - check OSZICAR for the convergence of each ionic step: *dE*, charge density convergence
 - increase NELM, decrease the (spin density) mixing parameters
 - choose a different BZ-integration method ISMEAR, SIGMA
 - choose a different electronic relaxation algorithm ALGO
 - basis sets too small (\longrightarrow aliasing errors)

• is the \vec{k} -mesh appropriate? (modify KPOINTS)

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Problem Handling

Aliasing Errors

- related to errors caused by the truncated FFT grid
- folding theorem: $\rho = \int \psi_n^* \psi_n (V_G^H)$ contain components up to $2n = 2G_{\text{cutoff}}$ after back-transformation from ρ_r to $\rho_G(V)$
- residual Vector (V ψ): components up to $3G_{
 m cutoff}$
- Fourier grid has to include all wave-vectors up to $2G_{cutoff}$.
- if this is not the case: \longrightarrow aliasing ("wrap around") errors: components of ρ are wrapped around from the other side of the box due to the periodicity
- high frequency components are aliased to low-frequency components

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Problem Handling

Drifts in the Forces

- impact of aliasing errors on the results::
- in a lattice with perfect translation symmetry: if all atoms of the cell are shifted by the same translation vector,
 - E has to remain exactly the same
 - forces sum up to 0: $\sum_{i=1}^{N_{at}} \vec{F}_i = 0$
- aliasing errors destroy the translational invariance:
- ullet \Rightarrow atoms equivalent by symmetry are equivalent no longer
- \Rightarrow drifts
- BUT VASP symmetrizes ρ and \vec{F} explicitely unless ISYM=0

Introduction Algorithms used in VASP INCAR parameters in VASP, Problem

Problem Handling

Drifts in the Forces

- to reduce drifts in the forces (written in OUTCAR)
- bulk & surfaces: increase the precision ENCUT, PREC
- surfaces: in 3D periodic cell, the origin of the cell is arbitrary, i.e. the slab may start drifting through the vacuum
 - keep (at least) one layer fixed (Selective Dynamics option in POSCAR)
 - polar surfaces: include dipole corrections (IDIPOL, LDIPOL) to avoid artificial electrostatic forces across the vacuum layer

Cell Volume Optimization INCAR parameters in VASP

Outline

- Ionic Relaxation
 - Introduction
 - Algorithms used in VASP
 - INCAR parameters in VASP, Problem Handling

2 Lattice Relaxation

- Cell Volume Optimization
- INCAR parameters in VASP

3 Phonons

- Introduction
- INCAR Parameters, Problem Handling
- 4 Molecular Dynamics
 - Introduction
 - MD Algorithms implemented in VASP
 - Thermostats implemented in VASP

Cell Volume Optimization INCAR parameters in VASP

Cell Volume Optimization

Introduction

- the equilibrium volume V_{eq} and shape of a crystal calculated from *ab initio* depend on the XC-type used:
 - LDA: overbinding $\longrightarrow a_0$ too small
 - PBE, PW91: underbinding $\longrightarrow a_0$ too large
 - results are improved using specially designed functionals (PBEsol, HSE),...
- ⇒ accurate calculations should always be performed for the cell at equilibrium for the respective XC-type to avoid artifacts (unless there is good reason not to do so)

Cell Volume Optimization INCAR parameters in VASP

Cell Volume Optimization

Strategies to obtain V_{eq}

• "by hand": series of calculations at different cell volumes, $\rightarrow V_{eq} = V(\min(E(V)))$:

very old-fashioned, almost impracticable for non-cubic cells

- "by hand": fitting to thermodynamic equations: eg. Birch-Murnaghan fit
- VASP: automatic optimization, based on the calculated Hellmann-Feynman stresses
- the automatic geometry optimization sensitively depends on the quality of the used basis sets:
 - E-cutoffs (completeness of the basis set), FFT-grids
 - \vec{k} -meshes

Cell Volume Optimization INCAR parameters in VASP

Cell Volume Optimization

Energy Cutoff: Basis Sets

- at each \vec{k} , the plane waves that are included in the basis have to fulfill the criterium $\frac{\hbar^2}{2m_e} |\vec{G} + \vec{k}|^2 < E_{\text{cutoff}}$
- *E*_{cutoff} defined by ENCUT: default: max(ENMAX), given in POTCAR for each element
- $E_{\rm cutoff} \approx \vec{G}^2 \Rightarrow \approx$ changes of cell volume and -shape
- \Rightarrow the default cutoff should only be used for calculations with fixed cell-shape and -volume, eg.
 - frozen phonons
 - surface and adsorption calculations
 - MD (NVT ensemble)

Cell Volume Optimization

Cell Volume Optimization

b2 1

 $b_1 = 2\pi/\tau_1$

explanation:

- lattice expanded $\tau_1 \longrightarrow \tau'_1$
- cutoff decreases by a a factor $\frac{\tau_1}{\tau'}$
- effective cutoff G'_{cut} is lower
- E is overestimated for larger Vs
- the apparent V_{eq} is too small

τı

Cell Volume Optimization INCAR parameters in VASP

Cell Volume Optimization

Improvement using fixed basis sets?

- start from WAVECAR with ISTART =2
- NO!!, because
- $\bullet~ {\it E}_{\rm cutoff}^{\rm effective}$ decreases with increasing V
- \Rightarrow quality of the basis set becomes worse with increasing V
- $\Rightarrow \min(E(V))$ is shifted
- dense \vec{k} meshes necessary to obtain smooth curves $(|\vec{k} + \vec{G}|^2)!$

Cell Volume Optimization INCAR parameters in VASP

Cell Shape relaxations

Stress Tensor

- VASP does not adopt the basis set in a run
- stress tensor σ_{ij} : implicitely calculated with a fixed-basis-set setup
- for Cu (270eV): contraction predicted by error (p=-50 kB)
- increase ENCUT (by 30%) to
 - perform lattice relaxations
 - calculate stress tensors and pressure $(P = \frac{1}{3} \text{Tr} \sigma_{ij})$

Cell Volume Optimization INCAR parameters in VASP

Cell Shape relaxations

"recipe" for Determining Cell Shapes

- always use an increased cutoff: ENCUT = 1.3*max(ENMAX)
- do it step-wise:
 - start with 1-2 steps (NSW) from your guessed input geometry (coarse pre-relaxation)
 - 2 delete WAVECAR
 - S continue from CONTCAR with slightly more steps
 - repeat 1-3 until the remaining pressure (and stress tensor components) are in accordance with the afforded accuracy
- if the space-group of the system is known, use ISYM = 2 to avoid symmetry violations due to numerical errors

Introduction INCAR Parameters, Problem Handling

Outline

- Ionic Relaxation
 - Introduction
 - Algorithms used in VASP
 - INCAR parameters in VASP, Problem Handling
- 2 Lattice Relaxation
 - Cell Volume Optimization
 - INCAR parameters in VASP

3 Phonons

- Introduction
- INCAR Parameters, Problem Handling
- 4 Molecular Dynamics
 - Introduction
 - MD Algorithms implemented in VASP
 - Thermostats implemented in VASP

Introduction INCAR Parameters, Problem Handling

Introduction

Basics

- vibrations of the crystal lattice influence
 - elastic
 - thermodynamic
 - optical
 - electronic transport properties
 - "soft modes" indicate phase transitions (bulk) or dissociation (dissociative adsorbtion processes)

Introduction INCAR Parameters, Problem Handling

Introduction

Basics

- if atom *m* in cell *l* of a crystal $\vec{R}_0(lm)$ is displaced by $\vec{u} \rightarrow \vec{R}(lm) = \vec{R}_0(lm) + \vec{u}(lm)$
- kinetic energy: $T = \frac{1}{2} \sum_{lm\alpha} M_m \dot{u}_{\alpha}^2(lm)$, potential energy: expanded

$$V(\vec{R}(lm)) = \underbrace{V_0(\vec{R}_0(lm))}_{=V_0=0} + \underbrace{\sum_{lm\alpha} \frac{\partial V(\vec{R}(lm))}{\partial R_\alpha(lm)} u_\alpha(lm)}_{=0 \text{ in equilibrium}} + \frac{1}{2} \sum_{lm\alpha,l'm'\beta} \underbrace{\frac{\partial^2 V(\vec{R}(lm))}{\partial R_\alpha(lm)\partial R_\beta(l'm')}}_{\Phi_{\alpha\beta}(ll'mm') \text{ force constant}} u_\alpha(lm) u_\beta(l'm')$$

• $\Phi_{\alpha\beta}(II'mm')$: derivative taken at $\vec{R}(Im) = \vec{R}_0(Im)$ Doris Vogtenhuber

Introduction INCAR Parameters, Problem Handling

Introduction

Basics

- $\Phi_{\alpha\beta}(ll'mm')$: component α of the force acting on atom (*lm*), caused by the displacement of atom (*l'm'*) in direction β
- equations of motion

$$M_m \ddot{u}_\alpha(lm) = -\frac{\partial V}{\partial u_\alpha(lm)} = -\sum_{l'm'\beta} \Phi_{\alpha\beta}(ll'mm')u_\beta(l'm')$$

- use symmetry
- harmonic ansatz: $u_{lpha}(\textit{Im},t) = \sqrt{M_m} e_{lpha}(m) e^{i ec{q} ec{R}_l} e^{i \omega t}$

$$\omega^{2} e_{\alpha}(m) = \sum_{\beta,m'} e_{\beta}(m') \underbrace{\left(\sum_{l'} (M_{m}M_{m'})^{-\frac{1}{2}} \Phi_{\alpha\beta}(ll'mm')e^{i\vec{q}(\vec{R}_{l'}-\vec{R}_{l})}\right)}_{D_{\alpha\beta}(mm',\vec{q}) \text{ dynamical matrix}}$$

Introduction INCAR Parameters, Problem Handling

Phonons

Bulk

- VASP calculates phonons at the zone-center
 - \Rightarrow supercell approach
- the elements of the Hessian Matrix are calculated either by
 - finite displacement of the ions: IBRION = 5,6; NFREE, POTIM assume: displacements are within the harmonic limit
 - using density functional perturbation theory IBRION = 7,8
- the tags making use of the symmetry (IBRION = 6,8) can be used in vasp.5.2 only

Introduction INCAR Parameters, Problem Handling

Phonons

Vibrational Modes of Molecules

- select vibrational modes of interest using Selective Dynamics in POSCAR (eg. change of the modes of a molecules upon adsorption on a surface)
- vibrational frequencies of adsorbates: usually calculated accurately if
 - only the adsorbate itself and the NN substrate atoms are not kept fixed
 - in any case: test how many "shells" have to be included to converge the frequencies
 - saves computing time

Introduction INCAR Parameters, Problem Handling

Problem Handling

possible sources of errors

- negative frequencies (imaginary modes):
 - may indicate structural instabilities (mode softening),
 - $\bullet\,$ or: calculation not properly converged \longrightarrow increase EDIFF from the default value
- VASP.4.6 only: POTIM has to be set explicitely: recommended POTIM = 0.015 or smaller, the default value (0.5) certainly is *not* within the harmonic limit.

 — unreasonable frequencies
- VASP can *not* continue from an unfinished run. → for the calculation of eg vibration frequencies of adsorbates (large number of atoms in the unit cell): reduce the calculated vibration modes to a reasonable number

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

Outline

- Ionic Relaxation
 - Introduction
 - Algorithms used in VASP
 - INCAR parameters in VASP, Problem Handling
- 2 Lattice Relaxation
 - Cell Volume Optimization
 - INCAR parameters in VASP
- 3 Phonons
 - Introduction
 - INCAR Parameters, Problem Handling

4 Molecular Dynamics

- Introduction
- MD Algorithms implemented in VASP
- Thermostats implemented in VASP

Introduction MD Algorithms implemented in VAS Thermostats implemented in VASP

Introduction

General Remarks

 classical equations of motion (EOM) for atoms in a microcanocical NVE ensemble (p: momenta, q: positions)

$$H(p,q) = \sum_{i=1}^{N} \frac{\vec{p_i}^2}{m_i} + V(q_1, \dots, q_n)$$
$$\frac{dp}{dt} = -\frac{\partial H(p,q)}{\partial q} \quad , \quad \frac{dq}{dt} = \frac{\partial H(p,q)}{\partial p}$$

• ergodic hypothesis: ensembe and time averages are related:

$$\langle A \rangle_{H} = rac{\int dp dq A(q) e^{-rac{H}{k_{B}T}}}{\int dp dq e^{-rac{H}{k_{B}T}}} = rac{1}{\tau} \int_{0}^{\tau} dt A(t)$$

• \Rightarrow MD can be used to compute observables A.

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Standard Version

- standard MD: on the Born-Oppenheimer surface, Hellmann-Feynman forces, Thermostat: Nosé
- Newtonian EOM for the set of atoms $i, M_i \vec{R}_i(t) = -\frac{\partial E}{\partial \vec{B}_i(t)}$
- \longrightarrow coupled set of equations, wavefunctions kept are orthonormal via a Lagrangian multiplier λ_{ij}

$$\mu \ddot{\psi}_i(\vec{r},t) = -\frac{\delta E}{\delta \psi_i^*(\vec{r},t)} + \sum_j \lambda_{ij} \psi_j(\vec{r},t)$$

• Verlet algorithm with damping factor (friction term) μ

$$\vec{v}_{N+1/2} = ((1 - \mu/2)\vec{v}_{N-1/2} - 2\alpha \vec{F}_N)/(1 + \mu/2) \vec{x}_{N+1} = \vec{x}_N + \vec{v}_{N+1/2}$$

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Introduction: (Chemical) Reactions

• for any reaction, according to Arrhenius' law:

$$\frac{dc_0(i)}{dt} = -\frac{k}{c_0}(i) \quad k = Ae^{-\frac{\Delta E^{\ddagger}}{k_B T}}, \quad A: \text{Arrhenius prefactor}$$

- Eyring-Polanyi theory: $\mathbf{k} = \frac{k_B T}{h} e^{-\frac{\Delta A^+}{k_B T}}$ $\Delta A^{\ddagger}...$ free energy difference between the transition state (‡) and the initial state (0).
- the free energy A can be evaluated via statistical thermodynamics:

$$A_i = -k_B T \log Q_i \Rightarrow k = -\frac{k_B T}{h} \cdot \frac{Q^{\ddagger}}{Q^0} \quad Q: \text{ partition function}$$

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

Introduction

Some Statistics' Basics

• Q^{tot} for species $i \ Q_i^{\text{tot}} = Q_i^{\text{trans}} Q_i^{\text{rot}} Q_i^{\text{vib}} Q_i^{\text{elecronic}}$ in extended systems with translational symmetry: Q_i^{trans} and Q_i^{rot} are constant and cancel out

•
$$Q_i^{\text{vib}}$$
: $Q_i^{\text{vib}} = \prod_{i=1}^M \frac{e^{-\frac{h\nu_i}{2k_BT}}}{1-e^{-\frac{h\nu_i}{k_BT}}}$ (harmonic approx.)

•
$$Q_i^{\text{electronic}}$$
: $Q_i^{\text{el}} = e^{-rac{E_i}{k_B T}} \Rightarrow rac{Q_i^{\text{el},\ddagger}}{Q_i^{\text{el},0}} = e^{-rac{\Delta E_i^{\ddagger}}{k_B T}}$

• the reaction constant k is given as

$$k = -rac{k_B T}{h} \cdot rac{Q^{\mathrm{vib},\ddagger}}{Q^{\mathrm{vib},0}} \cdot e^{-rac{\Delta E_i^{\ddagger}}{k_B T}}$$

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques

- standard version of MD:
 - uses Carthesian coordinates
 - transition states: obtained using the Nudged Elastic Band (NEB) method
 - $\bullet \; \longrightarrow$ inefficient, slow for chemical reactions
- improvement: Advanced MD Techniques
 - instead of cartesian coordinates: use a more clever choice of delocalized, internal coordinates ξ (bond lenghts, -angles,...)
 - ergodic hypothesis used to calculate $\langle A \rangle$ via its time average
- implemented in VASP.5 by Tomas Bucko
- compile VASP with -Dtbdyn to replace standard MD by advanced MD techniques

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques

- in systems with richly structured Potential Energy Hypersurfaces (PES): forces on the atoms might not drag the system over an energy barrier of the PES
- $\bullet\,\Rightarrow\,$ the system gets stuck in a basin of the PES
- methods to avoid this behavior:
 - add a bias potential *V*(ξ) to enhance the sampling in regions of the PES with low probability P(ξ_i) (eg transition state regions):

"umbrella sampling"

• constrain the MD by adding geometrical constraints via additional terms in the Lagrangian, enforcing the constraint "blue moon sampling"

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques: Biased MD

• a bias potential $\tilde{V}(\xi)$ is used to enhance sampling of the internal coordinate $\xi(q)$

$$\begin{split} \tilde{\mathcal{H}}(p,q) &= \mathcal{H}(p,q) + \tilde{\mathcal{V}}(\xi), \quad \xi = \xi(q) \\ \tilde{\mathcal{P}}(\xi_i) &= \langle \delta(\xi(q) - \xi_i) \rangle_{\tilde{\mathcal{H}}} = \frac{\int \delta(\xi(q) - \xi_i) e^{-\frac{\tilde{\mathcal{H}}}{k_B T}} dp dq}{\int e^{-\frac{\tilde{\mathcal{H}}}{k_B T}} dp dq} \end{split}$$

• 2. recover the correct distribution of A at the end by using

$$\left\langle A
ight
angle_{H} = rac{\left\langle A(q) e^{rac{ ilde{V}}{k_{B}T}}
ight
angle_{ ilde{H}}}{\left\langle e^{rac{ ilde{V}}{k_{B}T}}
ight
angle_{ ilde{H}}}$$

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques: Metadynamics

• additional DOFs (α) driving the reaction: ξ_{α} , $\dot{\xi}_{\alpha}$ (velocity) and mass μ_{α} , are coupled to the relevant geometrical parameters (collective variables $\Xi_{\alpha}(\mathbf{x})$) via harmonic springs with force constants k_{α} :

$$\mathcal{L} = \mathcal{L}_{0} + \sum_{alpha} \frac{1}{2} \mu_{\alpha} \dot{\xi_{\alpha}}^{2} - \sum_{alpha} \frac{1}{2} k_{\alpha} (\Xi_{\alpha}(\mathbf{x}) - \xi_{\alpha})^{2} - \tilde{V}(t,\xi)$$

- $\tilde{V}(t,\xi) = h \sum_{i=1}^{t/t_G} e^{-\frac{|\xi(t)-\xi(it_G)|^2}{2w^2}}$ sum of Gaussian hills (h_i, w_i) updated at every time-step t_G during the calculation
- t_G : 1-2 orders of magnitude > than Δt of the MD

•
$$A(\xi)_{t=\infty} = -\lim_{t\to\infty} \tilde{V}(t,\xi) + \text{const}$$

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques: Constrained MD

• modify the Lagrange multiplier \mathcal{L} by adding a term including all geometric constraints r:

$$\mathcal{L}(q,\dot{q})^* = \mathcal{L}(q,\dot{q}) + \sum_{i=1}^r \lambda_i \sigma_i$$

with $\sigma_i = \xi_i(q) - \xi_i$, $\xi_i \dots$ fixed variable

- **1** standard leap-frog MD to obtain $\rightarrow q_i(t + \delta t)$
 - 2) use new positions to compute $\lambda_i \forall$ constraints
- 3 update v and q by adding a contribution due to the restoring force (≈ λ) → q_i(t + δt)
- repeat 1-3 until |\(\sigma(q)\)| matches the convergence criterium (SHAKE algorithm)

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques: TD integration of A-gradients

- T. Bucko, J.Phys.Cond.Matt. 20, 064211 (2008)
- the #DOF dynamical variables of \hat{H} are split into
 - the active reaction variable $\xi^*(p_{\xi}, q_{\xi})$, defining the reaction path $1 \longrightarrow 2$, (slow modes)
 - inactive set $\mathbf{q} = \{q_1, \dots, q_{M-1}\}, p_q$ (fast modes; not frozen, but do not contribute to the minimum *A*-path as their thermal motions are nearly harmonic)

$$\Delta A_{1\longrightarrow 2} = \int_{\xi(1)}^{\xi(2)} d\xi \left(\frac{\partial A}{\partial \xi}\right)_{\xi^*}$$

- ξ is constrained to remain constant to $\xi^* \Rightarrow \dot{\xi} = 0$,
- also, $\Rightarrow p_{\xi}$ is not sampled in the MD

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques: TD integration of A-gradients

the Hamiltonians of the constrained $(H_{\xi^*}^c)$ and unconstrained (H) ensembles are:

$$H_{\xi^*}^c = \frac{1}{2} \mathbf{p}^t \mathbf{X} \mathbf{p} + V(\mathbf{q}, \xi)$$

$$H = H_{\xi^*}^c + p_{\xi}^t (\mathbf{Y} \cdot \mathbf{p}_q) + \frac{1}{2} (p_{\xi}^t \mathbf{Z} p_{\xi})$$

with

$$\mathbf{X}_{\alpha,\beta} = \sum_{i=1}^{M} \frac{1}{m_i} \frac{\partial q_{\alpha}}{\partial x_i} \frac{\partial q_{\beta}}{\partial x_i}, \mathbf{Y}_{\alpha} = \sum_{i=1}^{M} \frac{1}{m_i} \frac{\partial \xi}{\partial x_i} \frac{\partial q_{\beta}}{\partial x_i}, \mathbf{Z} = \sum_{i=1}^{M} \frac{1}{m_i} \left(\frac{\partial \xi}{\partial x_i}\right)^2$$

$$T_{\alpha,\beta} = 1, \dots M - 1$$

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques: TD integration of A-gradients

constrained and unconstrained ensemble averages of a quantity O are related via a "blue moon" correction E.A.Carter *et.al.*, Chem.Phys.Lett **156**, 472 (1989)

$$\langle \mathcal{O} \rangle = \frac{\left\langle \mathcal{O} Z^{-\frac{1}{2}} \right\rangle_{\xi^*}}{\left\langle Z^{-\frac{1}{2}} \right\rangle_{\xi^*}}$$

• the constraints on the system to remain on the reaction path are included via the Lagrangian multiplier λ (accounting for the reaction coordinate, calculated using the SHAKE algorithm) in the modified Lagragian

$$\mathcal{L}^*(\mathbf{x}, \xi, \dot{\mathbf{x}}) = \mathcal{L}(\mathbf{x}, \dot{\mathbf{x}}) + \lambda(\xi \mathbf{x} - \xi)$$

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques: TD integration of A-gradients

• the free energy gradients can then be calculated:

$$\left(\frac{\partial A}{\partial \xi}\right)_{\xi^*} = \frac{1}{\langle Z^{-\frac{1}{2}} \rangle_{\xi^*}} \left\langle Z^{-\frac{1}{2}} \left[-\frac{\lambda_{\xi}}{\lambda_{\xi}} + k_B T Z^{-1} \sum_{i=1}^M \frac{1}{m_i} \frac{\partial \xi}{\partial x_i} \frac{\partial Z}{\partial x_i} \right] \right\rangle_{\xi^*}$$

 \bullet crucial for blue moon ensemble techniques: appropriate choice of the parameter ξ

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Advanced MD Techniques: Slow Growth Approach

- linear change of the free-energy profile along a geometric parameter ξ from $\xi_{\text{initial state}} \longrightarrow \xi_{\text{final state}}$ with velocity $\dot{\xi}$
- irreversible work w^{irrev} to perform this transformation:

$$w_{1\to 2}^{\text{irrev}} = \int_{\xi_{\text{i.s.}}}^{\xi_{\text{f.s.}}} \frac{\partial V(q)}{\partial \xi} \cdot \frac{\partial \xi}{\partial t} dt$$

- $w_{1 \rightarrow 2}^{\text{irrev}}$ is related to the free energy: $e^{-\frac{A_{1 \rightarrow 2}}{k_B T}} = \left\langle e^{-\frac{w_{1 \rightarrow 2}^{\text{irrev}}}{k_B T}} \right\rangle$
- for infinitesimally small $\dot{\xi}$ (adiabatic transformation): $w_{1\rightarrow 2}^{\text{irrev}} = \Delta A$ (free energy difference)

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

Parinello-Rahman dynamics

- NpT ensembles with the enthalpy H = E + pV
- EOM of the atoms' and the lattice DOFs:

$$\mathcal{L}(s,\mathbf{h},\dot{s},\dot{\mathbf{h}}) = \frac{1}{2}\sum_{i=1}^{N}m_{i}\dot{s}_{i}^{t}\mathbf{h}^{t}\mathbf{h}\dot{s}_{i} - V(s,\mathbf{h}) + \frac{1}{2}W\mathrm{Tr}(\dot{\mathbf{h}}^{t}\dot{\mathbf{h}}) - p_{\mathrm{ext}}\Omega$$

 s_i : atomic positions, **h**: matrix formed by the lattice vectors, $\Omega = \det h$: cell volume, W[m]: constant, mass of the lattice DOFs

• thermostat to be used: Langevin Thermostat

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

MD Algorithms implemented in VASP

MD-related files in VASP

- standard MD: PCDAT (OUT): pair correlation function
- advanced MD (-Dtbdyn)
 - ICONST (IN): constraints to geometry parameters (bond lengths, angles, direct coordinates of $\vec{a}, \vec{b}, \vec{c}$, constraint status,...)
 - **PENALTYPOT** (IN): bias potentials (position in the space of active coordinates, height and width of the Gaussian hills)
 - REPORT (OUT): MD-related output
 - HILLSPOT (IN/OUT): Gaussian hills generated on the fly

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

Thermostats implemented in VASP

The Nosé Thermostat

- system is coupled to 1 additional DOF (=heat bath *s*)
- non-Hamiltonian EOM of the extended system:

$$M_{I}\ddot{\vec{R}}_{I}(t) = -\frac{\partial E}{\partial \vec{R}_{I}(t)} - M_{I}\ddot{\vec{R}}_{I}(t)\frac{\dot{s}(t)}{s(t)}$$
$$Q\frac{d(\dot{s}(t)/s(t))}{dt} = -\sum_{I}M_{I}|\ddot{\vec{R}}_{I}(t)|^{2} - \underbrace{(3N-1)}_{\#DOF}k_{B}T$$

- Q Nosé mass: response of s to the fluctuations of the ionic system
- characteristic frequency of the thermostat at $T: \omega_T^2 = \frac{2gk_BT}{Q}$
- equilibration ions heat bath: coupling of the system to the Thermostat is most effective if ω_T is of the same order of magnitude of the characteristic frequency of the system to which it is coupled.

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

Thermostats implemented in VASP

The Nosé Thermostat

- coupling of the system to the thermostat via ω_T(~ Q⁻1) corresponds to a canonical ensemble at fixed temperature T:
- using the Nosé thermostat: conservation of the expectation value of the energy for the *combined* system (cell + thermostat)

$$\Omega = \Omega_{mc} + \frac{1}{2} (\frac{\dot{s}}{s})^2 + 3(N-1)k_B T \ln s$$

• micro-canonical ensemble: conservation of the energy Ω_{mc} :

$$\Omega_{mc} = \underbrace{T_{\text{ions}}}_{E_{kin}} + \underbrace{E[\vec{R}_{l}, \psi_{i}, f_{i}]}_{\text{internal } E} + \underbrace{TS_{e^{i}}[f_{i}]}_{\text{electr. entropy}}$$

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

Thermostats implemented in VASP

Main Input Parameters for standard MDs (Nosé Thermostat)

- in INCAR
 - IBRION = 0: switches ionic relaxation algorithm to MD
 - NSW: number of MD steps (has to be given)
 - SMASS: choice of the ensemble
 - POTIM: time step in fs
 - TEBEG, TEEND: starting and final T (eg for simulated annealing)
 - PREC = Normal: recommended, (Low may lead to drifts)
- in POSCAR (optional): appended to the block of ionic positions, initial velocities \vec{v}_{in} of the ions can be given (in Å/fs)

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

Thermostats implemented in VASP

INCAR: Choice of the Nosé mass: SMASS

- SMASS = -3: microcanonical ensemble: conservation of the total free energy (→ no thermostat), ions are accelerated by Hellmann-Feynman forces calculated from *ab initio*
- SMASS = -2: the initial velocities (\vec{v}_{in}) (read from POSCAR) are kept constant. actual step size: \vec{v}_{in} *POTIM
- SMASS = -1: rescaling of T after each NBLOCK step:
 - T = TEBEG + (TEEND TEBEG) * NSTEP / NSW
 - between the T-jumps: microcanonical ensemble conditions
 - simulated annealing
- SMASS = 0: canonical ensemble; the Nosé mass Q is determined by VASP, averaging over 40 time-steps
- SMASS > 0: Q set explicitely: it controls the frequency of T-oscillations

Introduction MD Algorithms implemented in VASF Thermostats implemented in VASP

Thermostats implemented in VASP

The Andersen Thermostat

- coupling to the heat bath via random collisions of randomly chosen atoms with the heat bath → stochastic impulsive forces on the atoms
- average number of collisions per atom and time-step: ANDERSEN_PROB
- ANDERSEN_PROB = 0 corresponds to a microcanonical NVE ensemble.
- VASP allows for up to 3 different sub-systems, coupled to 3 different Andersen thermostats

Introduction MD Algorithms implemented in VASP Thermostats implemented in VASP

Thermostats implemented in VASP

The Langevin Thermostat

• T is maintained via modified EOMs:

$$M_I \ddot{\vec{R}}_I(t) = -\vec{F}_i + \vec{f}_i - \gamma_i \vec{p}_i$$

 $\vec{f}_{i} \dots \text{random force with dispersion } \sigma_{i} = \frac{2m_{i}\gamma_{i}k_{B}T}{\Delta t}$ • NVT MD: IBRION=0, ISIF=2, MDALGO=3
• NpT MD: IBRION=0, ISIF=3, MDALGO=3
LANGEVIN_GAMMA_L: ... friction coefficient for the lattice DOF
PMASS: mass for the lattice DOF
(PSTRESS): forces acting on the lattice DOF:
components of the stress tensor σ_{ij} are used to calculate the
changes of the lattice constants and angles \Rightarrow increased ENCUT to avoid Pulay stress

Introduction MD Algorithms implemented in VASF Thermostats implemented in VASP

Thermostats implemented in VASP

Choice of the Thermostat: MDALGO

- 0: standard MD as in VASP compiled without -Dtbdyn
- 1: Andersen
- 11: Metadynamics with Andersen
- 13: Andersen, up to 3 subsystems coupled to up to 3 independent Thermostats
- 2: Nosé Hoover
- 21: Metadynamics with Nosé Hoover
- 3: Langevin thermostat